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Preface

In 1970 I gave a graduate course in ergodic theory at the University of
Maryland in College Park, and these lectures were the basis of the Springer
Lecture Notes in Mathematics Volume 458 called “Ergodic Theory—
Introductory Lectures” which was published in 1975. This volume is now
out of print, so I decided to revise and add to the contents of these notes. I
have updated the earlier chapters and have added some new chapters on the
ergodic theory of continuous transformations of compact metric spaces. In
particular, I have included some material on topological pressure and
equilibrium states. In recent years there have been some fascinating inter-
actions of ergodic theory with differentiable dynamics, differential geometry,
number theory, von Neumann algebras, probability theory, statistical
mechanics, and other topics. In Chapter 10 I have briefly described some of
these and given references to some of the others. I hope that this book will
give the reader enough foundation to tackle the research papers on ergodic
theory and its applications.

I would like to dedicate this volume to the memory of Rufus Bowen who
died on July 30, 1978 at the age of 31. He made outstanding contributions
to ergodic theory and his friendship enhanced the lives of all who knew him.

April, 1981 PETER WALTERS
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CHAPTER 0
Preliminaries

§0.1 Introduction

In its broadest interpretation ergodic theory is the study of the qualitative
properties of actions of groups on spaces. The space has some structure (e.g.
the space is a measure space, or a topological space, or a smooth manifold)
and each element of the group acts as a transformation on the space and
preserves the given structure (e.g. each element acts as a measure-preserving
transformation, or a continuous transformation, or a smooth transformation).
To see how this type of study arises consider a system of k particles moving
in R® under known forces. Suppose that the state of the system at a given time
is determined by knowing the positions and the momenta of each of the k
particles. Thus at a given time the system is determined by a point in R
As time continues the system alters according to the differential equations
governing the motion, e.g., Hamilton’s equations
dq; O0H dp;  O0H

dt  op,  dt  Oq

If we are given an initial condition and if the equations can be uniquely solved
then the corresponding solution gives us the entire history of the system,
which is determined by a curve in R,

If x is a point in the state space representing the system at a time ¢, let
T,(x) denote the point of the state space representing the system at time
t + to. From this we see that T, is a transformation of the state space and,
moreover, Ty = idand T,,; = T, o T,. Thus t —» T, is an action of the group
R on the state space. Because the Hamiltonian H is constant along solution
curves, each energy surface H ™ !(e) is invariant for the transformation T,

1



2 0 Preliminaries

so that we get an action of R on each energy surface. One is interested in the
asymptotic properties of the action i.e. in T, for large t. The transformations
T,|H ™ !(e) are continuous and are smooth if H ~!(e) is smooth. Measure the-
ory enters this picture via a theorem of Liouville which tells us that if the forces
are of a certain type one can choose coordinates in the state space so that
the usual 6k-dimensional measure in these coordinates is preserved by each
transformation T,.

The word “ergodic” was introduced by Boltzmann to describe a hypoth-
esis about the action of {T,|t € R} on an energy surface H ™ '(e) when the
Hamiltonian H is of the type that arises in statistical mechanics. Boltzmann
had hoped that each orbit { T,(x)|t € R} would equal the whole energy surface
H™'(e) and he called this statement the ergodic hypothesis. The word
“ergodic” is an amalgamation of the Greek words ergon (work) and odos
(path). Boltzmann made the hypothesis in order to deduce the equality of
time means and phase means which is a fundamental algorithm in statistical
mechanics. The ergodic hypothesis, as stated above, is false. The property
the flow needs to satisfy in order to equate time means and phase means of
real-valued functions is what is now called ergodicity.

It is common to use the name ergodic theory to describe only the qualita-
tive study of actions of groups on measure spaces. The actions on topological
spaces and smooth manifolds are often called topological dynamics and
differentiable dynamics. This measure theoretic study began in the early
1930’s and the ergodic theorems of Birkhoff and von Neumann were proved
then. The next major advance was the introduction of entropy by
Kolmogorov in 1958. The proof, by Ornstein in 1969, that entropy was
complete for Bernoulli shifts revitalised the work on the isomorphism
problem. During recent years ergodic theory had been used to give important
results in other branches of mathematics.

We shall study actions of the group Z of integers on a space X i.e. we
study a transformation T:X — X and its iterates T", n € Z. This is simpler
than studying the actions of R. Of course, if { T, |t € R} is an action of R on X,
then by choosing t, # 0 and observing the system at the times ..., —t,, 0,
to, 2o, 3ty, . . ., we are considering (T, )", n € Z.

In the following sections we summarise some of the background ideas and
notation we shall be using,

We shall use Z to denote the set of integers, Z* to denote the non-negative
integers, R to denote the real numbers, R* to denote the non-negative reals,
and C to denote the complex numbers. The empty set will be denoted by .

If A,B are subsets of a set X, then B\A denotes the difference set
{xe X|xeB,x¢A},and A A B denotes the symmetric difference (4\B) U
(B\A). We use 2* to denote the collection of all subsets of X.

We use “iff” to denote “if and only if.” We number lemmas and theorems
in a single sequence (Theorem 5.6 is the sixth theorem in Chapter 5) but
give a corollary the same number as the corresponding theorem (Corollary
5.6.2 is the second corollary of Theorem 5.6).
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§0.2 Measure Spaces

We shall generally refer to Kingman and Taylor [1] and Parthasarathy [2].
Let X be a set. A g-algebra of subsets of X is a collection % of subsets of X
satisfying the following three conditions: (i) X € %;(ii) if B € % then X\B € %,
(iii) if B, % for n> 1 then ()i, B,€ .

We then call the pair (X, #) a measurable space. A finite measure on (X, %)
is a function m: 4 — R™ satisfying m() = 0 and m(| |2, B,) = > ==, m(B,)
whenever {B,}? is a sequence of members of 4 which are pairwise disjoint
subsets of X. (Actually the latter condition implies m({F) = 0 since m is
finite-valued.) A finite measure space is a triple (X, %, m) where (X, %) is a
measurable space and m is a finite measure on (X, %). We say (X, %,m) is a
probability space, or a normalised measure space, if m(X) = 1. We then say
m is a probability measure on (X, %). We shall usually consider only prob-
ability spaces.

A finite signed measure on a measurable space (X, %) isa functionm: %4 — R
satisfying m(¥) =0 and m(| J;2, B,) = ) 71 m(B,) whenever {B,}? is a
sequence of members of # which are pairwise disjoint subsets of X. The
Jordan decomposition says that a finite signed measure m on (X, %) can be
written as the difference m = m, — m, of two finite measures on (X, ) which
are uniquely determined by m (see Kingman and Taylor [1], pp. 62 and 64).

Measurable spaces are usually constructed by having a collection & of
interesting subsets of a set X (such as the collection of all subintervals of
[0,1]) and then considering the smallest g-algebra % containing all these
subsets. This makes sense because 2* is a g-algebra and any intersection of
g-algebras of subsets of X is also a o-algebra of subsets of X. It is then usually
difficult to decide which subsets of X are in . When constructing a measure
on a measurable space (X, %) obtained in this way, one usually knows what
values the measure should take on members of & and then one needs to
extend it to be defined on 4. We now describe the basic extension theorem of
this type. This involves discussion of the properties the collection & should
have.

A collection & of subsets of X is called a semi-algebra if the following three
conditions hold: (i) @ e &; (il) if 4, Be &, then A n Be &; (iil) if A e &,
then X\A = (Ji_, E; whereeach E; € & and E,, . . ., E, are pairwise disjoint
subsets of X. For example, the collection of all subintervals of [0, 1] is a semi-
algebra. Also, the collection of all subintervals of [0,1] of the forms [0,5]
and (a,b], with 0 < a < b < 1, forms a semi-algebra.

A collection &7 of subsets of X is called an algebra if the following three
conditions hold: (i) J € o; (ii) if 4,Be &/, then A N Be &/ (iii) if 4 € ,
then X\A4 € /. Clearly every algebra is a semi-algebra and every g-algebra
is an algebra. In the definition of an algebra we can replace (ii) by the condi-
tion that whenever Ay, ..., A, € & then | Ji=, 4; € .

Since the intersection of any family of algebras of a set X is again an
algebra of subsets of X it makes sense to speak of the algebra generated by
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any given collection of subsets of X. There is the following simple theorem
(Parthasarathy [2], p. 19)

Theorem 0.1. Let & be a semi-algebra of subsets of X. The algebra, 4(¥),
generated by & consists precisely of those subsets of X that can be written
in the form E = U;’:l A; where each A;e & and A, . . ., A, are disjoint sub-
sets of X.

Suppose & is a semi-algebra of subsets of X. A function 7: — R* is
called finitely additive if ©() =0 and t({ )i~ E) = Y=, ©(E) whenever
E,, ..., E, are members of &% which are pairwise disjoint subsets of X and
(Ji=1 E; € &. Such amap tis called countably additive if the second condition
is replaced by the requirement that t(| )2, E) = )2, ©(E;) whenever (E;}{
are members of & which are pairwise disjoint subsets of X and ( )2, E; € &.
If & is the semi-algebra of all subintervals of [0,1] of the form [0,b] and
(a,b] then the length function is countably additive. A simple application of
Theorem 0.1 gives the following (Parthasarathy [2], pp. 20 and 59).

Theorem 0.2. If & is a semi-algebra of subsets of X and 1. — R™ is finitely
additive then there is a unique finitely additive function t,:54(¥)— R* which
is an extension of 1 (ie. T, = T on &). If 1 is countably additive then so is 1,.

It could be that X ¢ & but we always have that X is a disjoint union of a
finite number of members E;, ..., E, of & so 1,(X)=1if Y7, (E) = 1.

There is the following theorem on extension from an algebra &/ to the
o-algebra %(A) generated by /. (%(A) is the intersection of all g-algebras
that contain «/.) (See Parthasarathy [2], pp. 70 and 71).

Theorem 0.3. Let &/ be an algebra of subsets of X and let ©,:/ — R* be
countably additive and t,(X) = 1. Then there is a unique probability measure
T, on (X, B(f)) which extends t,.

By combining Theorems 0.2 and 0.3 we see that a countably additive
function 7 on a semi-algebra & can be uniquely extended to a probability
measure on (X, B(¥)) if Yi-; t(E) =1 when X = (Ji=, E; is a disjoint
union of members of &. As an example the length function defined on the
semi-algebra of all subintervals of [0, 1] of the form [0, 5] and (a,b] can be
uniquely extended to a probability measure, called the Lebesgue measure,
defined on the Borel subsets of [0, 1].

In checking that the extension works for particular examples the most
difficult part is usually showing countable additivity. This can sometimes be
done for 7 on the semi-algebra & (as for Lebesgue measure) but it is sometimes
more convenient to prove that t is finitely additive and that the finitely addi-
tive extension t,: /(&) — R* is countably additive. The main tool for this
is the following theorem (Kingman and Taylor [1], p. 56).
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Theorem 0.4. Let &/ be an algebra of subsets of X and let t,: o - R* be

Sfinitely additive and let 1,(X) = 1. Then t, will be countably additive if for

every decreasing sequence E, > E, > Ey> - of members of o with
<, E,= & we have t,(E,) > 0.

One situation where this theorem is used is in defining product measures
on a countable product of probability spaces. For i € Z let (X;, %;,m;) be a
probability space. Let X = [ [2 _,, X;. So a point of X is a bisequence {x;} %,
with x; € X, for each i. We now define a g-algebra 4 of subsets of X called
the product of the o-algebras %;. Let n > 0, let 4; € 4, for |j| < n, and con-
sider the set

—(n+1)

[T Xix ]_[ A; x l_[ X;={(x)%, € X|x;€ A for|j| < n}.

i=—o j=-n i=n+1
Such a set is called a measurable rectangle and the collection of all such
subsets of X forms a semi-algebra &. The g-algebra 4 is the g-algebra
generated by &. We write (X, %) = [[2 _, (X;, %,). If we define 1:% —» R*
by giving the above rectangle the value | [j-_, m;(4;), then one can use
Theorems 0.2 and 0.4 (see Kingman and Tayler [1], p. 140) to extend t to a
probability measure m on (X, 4). The probability space (X, %, m) is called
the direct product of the spaces (X;, %;,m;) and is sometimes denoted

; =_w (X;,%;,m;). The corresponding construction holds for a product

20 (Xi, Biymy).

A special type of product space will be important for us. Here each space
(X;, B, m;) is the same space (Y, %, ) and Y is the finite set {0,1, ...,k — 1},
% = 2%, and u is given by a probability vector (po, py, - - - , Pxk—1) Where p; =
u({i}). We can take elementary rectangles where each A4; (in the description

above) is , |j| < n, such an
elementary rectangle has the form {(x)®,|x; = a; for |j| <
denote this set by _,[a_,,d—u+1), - - - »an—1,4,], and call it a block with end

points —n and n. The collection of all these sets form a semi-algebra which
generates the product g-algebra #. We have m(_,[a,, .. .,a,),) = [[}=np}
The measure m is called the (po, . . . ,pr—1)- product measure. Sometimes we
consider blocks with end points h and [ where h < [. Such a set is one of the
form ,[ay, . ..,a]); = {(x)%x|Xi = a; for h <i<}. It has measure [ [}, p;.
Theorem 0.4 can also be used to obtain further measures on the space
(X,8) where X =[]*, Y, Y={0,1,...,k—1}, and % is the product
o-algebra described above. The following is a special case of the Daniell-
Kolmogorov consistency theorem (Parthasarathy [2], p. 119).

Theorem 0.5. Fix k > 1 and let Y = {0,1, ...,k — 1} and (X, 8B) = [ |2 (Y.
2Y). For each natural number n and aq, . . . , a, € Y suppose a non-negative real
number p,(ag, . . . ,a,) is given so that

(a) 2. Polag) =1

apgeY
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and
(b) Pn(ao, e 7an) = Z pn+l(“07 <oy, an+ 1)'
an+1€Y
Then there is a unique probability measure m on (X, B) with m(,[ay, . . . ,a,]) =

pi—w(@p, .. .,a) forallh <land alla;e Y,h<i<I

The proof boils down to showing that the function naturally defined on
the algebra of all finite unions of elementary rectangles is countable additive
by using Theorem 0.4.

There is another way, which is useful in some proofs, of describing the
g-algebra %(«/) generated by an algebra 7. A collection M of subsets of X
is called a monotone class if whenever E; « E, = E; = - - - all belong to M
then so does | )&, E, and whenever F; > F, > F3 > - - all belong to M
then so does ();=, F,. Since the intersection of any family of monotone
classes is a monotone class, we can speak of the monotone class generated
by any given collection of subsets of X.

Theorem 0.6. Let o/ be an algebra of subsets of X. Then B(f) equals the
monotone class generated by <.

As we have seen we usually know the elements of an algebra .« but we do
not know which subsets of X belong to %(«/). This problem can sometimes
be overcome by using the following approximation theorem (Kingman and
Taylor [1], p. 84).

Theorem 0.7. Let (X, %, m) be a probability space and let o/ be an algebra of
subsets of X with B(f) = B. Then for each ¢ > 0 and each B € % there is some
Ae o withm(A N\ B) <e.

Note that when m(4 A B) < ¢ then |m(4) — m(B)| < ¢ because m(4) =
m(A\B) + m(A n B) and m(B) = m(B\A) + m(A n B), so that |m(4)—
m(B)| < m(A A B).

§0.3 Integration

Let 4(R) denote the g-algebra of Borel subsets of R. This is the o-algebra
generated by all open subsets of R and is also generated by the collection of
all intervals, or by the collection of all intervals of the form (c, o).

Let (X, %, m) be a measure space. A function f:X — R is measurable if
f~Y(D) € # whenever D € %(R) or equivalently if f~*(c, 0) € & for all c € R.
A function f: X — C is measurable if both its real and imaginary parts are
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measurable. If X is a topological space and 4 the g-algebra generated by the
open subsets of X, then any continuous function f: X — C is measurable. We
say f =g ae. if m({x:f(x) # g(x)}) = 0. Suppose X is a topological space,
B(X) its g-algebra of Borel sets and m a measure on (X, %(X)) with the
property that each non-empty open set has non-zero measure. Then for two
continuous functions f, g: X — R, f = g a.e. implies f = g because {x: f(x) —
g(x) # 0} is an open set of zero measure.

Let (X, 4%, m) be a probability space. A function f:X — R is a simple
function if it can be written in the form Y 7_ a;x4,, where a; € R, A4; € 4, the
sets A; are disjoint subsets of X, and x4, denotes the characteristic function
of A;. Simple functions are measurable. We define the integral for simple
functions by:

ffdm = i a;m(A;).

This value is independent of the representation ) ;a;x4,.
Suppose f: X — Rismeasurable and f > 0. Then there exists an increasing
sequence of simple functions f, » f. For example, we could take

i—1 i—1 i
—, lf—"s x)<—n i=1,...,n2"
j;;(x)= 2" 2 ( 2

n, if f(x) = n.

We define [ f dm = lim,_. , [ f, dm and note that this definition is independent
of the chosen sequence { f,}. We say f is integrable if | f dm < co.

Suppose f:X — R is measurable. Then f=f" — f~ where f*(x) =
max{ f(x),0} > 0and f~(x) = max{—f(x),0} > 0. We say that f is integrable
if {[f*dm, [ f~ dm < co and we then define

ffdm=ff+dm—ff_dm.

We say f: X — C is integrable (f = f| + if,) if f, andf, are integrable and
we define

ffdm=ff1dm+iffzdm.

Observe that f is integrable if and only if | f| is integrable. If f = g a.e. then
one is integrable if the other is and [ f dm = [gdm.

The two basic theorems on integrating sequences as functions are the
following.

Theorem 0.8 (Monotone Convergence Theorem). Suppose fi < f, < f3 <
-+ - is an increasing sequence of integrable real-valued functions on (X, %, m).
If {[ f,dm} is a bounded sequence of real numbers then lim,_, ,, f, exists a.e.
and is integrable and {(lim f,)dm = lim | f,dm. If {[ f,dm} is an unbounded
sequence then either lim,_, ., f, is infinite on a set of positive measure or
lim,_, ., f, is not integrable.
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Theorem 0.9 (Fatou’s Lemma). Let {f,} be a sequence of measurable real-
valued functions on (X, %, m) which is bounded below by an integrable function.
If liminf,_, | f,dm < oo thenliminf,_, , f, is integrable and {liminf f, dm <
liminf [ f, dm.

Corollary 0.9.1 (Dominated Convergence Theorem). If g:X — R is inte-
grable and { f,} is a sequence of measurable real-valued functions with |f,| < g
a.e.(n> 1) and lim,_, , f, = f a.e. then f is integrable and lim | f,dm = | f dm.

We denote by L!(X, %, m) (or L*(m)) the space of all integrable functions
f:X — C where two such functions are identified if they are equal a.e. How-
ever we write f € L!(X, %, m) to denote that f: X — C is integrable. The space
L(X,4,m) is a Banach space with norm Pf”l = {|f| dm.

If fe L'(X,%,m), then [ 4 f dm denotes | f - y,dm.

If m is a finite signed measure on (X, %) and m = m; — m, is its unique
Jordan decomposition into the difference of two finite measures, then we can
define [ fdm = (fdm, — {fdm, for f € L'(m;) n L'(my).

§0.4 Absolutely Continuous Measures and
Conditional Expectations

Let (X,%) be a measurable space and suppose u, m are two probability
measures on (X, 2). We say p is absolutely continuous with respect to m(u < m)
if u(B) =0 whenever m(B) = 0. The measures are equivalent if p « m and
m < p. The following theorem characterises absolute continuity.

Theorem 0.10 (Radon—Nikodym Theorem). Let u, m be two probability mea-
sure on the measurable space (X, ). Then u < miff there exists f € L'(m), with
f=0and(fdm=1,suchthat u(B) = [ f dm VB € B. The function f is unique
a.e. (in the sense that any other function with these properties is equal to f a.e.).

The function f is called the Radon—Nikodym derivative of u with respect
to m and denoted by du/dm.

The “opposite” notion to absolute continuity is as follows. Two probability
measures pu, m on (X, ) are said to be mutually singular (u L m) if there is
some B e 4 with u(B) = 0 and m(X\B) = 0. There is the following decom-
position theorem.

Theorem 0.11 (Lebesgue Decomposition Theorem). Let u, m be two probabil-
ity measures on (X, ). There exists p € [0, 1] and probability measures p, i,
on (X,%) such that p=pu; + (1 — p)u, and p, <m, p, L m. (0= pu; +
(1 — p)u, means u(B) = puy(B) + (1 — p)u,(B) VB € B). The number p and
probabilities p,, u, are uniquely determined.
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The Radon-Nikodym theorem allows us to define conditional expecta-
tions. Let (X, %, m) be a measure space and let € be a sub-g-algebra of 4.
We now define the conditional expectation operator E(-/%): L}(X, %, m) —
LY(X,%,m). If feL'(X, %, m) takes non-negative real values then u(C) =
a™! [¢fdm (where a = [y fdm) defines a probability measue, u,, on (X, %,
m)and p; <« m. By Theorem 0.10 there is a function E( f/%) € L'(X, %, m) such
that E(f/%) >0 and (¢ E(f/%)dm = [cfdm YC € . Moreover E(f/%) is
unique a.e. If f is real-valued we can consider the positive and negative
parts of f and define E(f/%) linearly. Similarly when f is complex-valued
we can use the real and imaginary parts to define E(f/%) linearly. There-
fore if f € L'(X, %, m) then E(f/%) is the only ¥-measurable function with
[cE(f/€)dm = [cf dmVC e %. The following properties of the map
E(-/%):L'(X,%,m) - L'(X,%,m) hold (Parthasarathy [2], p. 225):

(i) E(-/®) is linear.
(ii) If £ > 0, then E(f/%) = 0.
(iii) If f € L}(X, %, m) and g is ¥-measurable and bounded,

E(fy/%) = gE(f/%).

(iv) [E(f/%)| < E(|f|/€), feL'(X,8,m)
(v) If €, = %,, then E(E(f/,)/%,) = E(f/%.), f € L\(X, B, m).

§0.5 Function Spaces

One way to deal with some problems on a measure space is to use certain
natural Banach spaces of functions associated with the measure space.

Let (X, 4%, m) be a measure space and let p € R with p > 1. Consider the
set of all measurable functions f:X — C with | f|? integrable. This space is a
vector space under the usual addition and scalar multiplication of functions.
If we define an equivalence relation on this set by f ~ g iff f = g a.e. then
the space of equivalence classes is also a vector space. Let LA(X, %, m)
denote the space of equivalence classes, although we write f € LP(X, %, m) to
denote that the function f: X — C has | f|” integrable. The formula ||f]|, =
L[| f|r dm]"/" defines a norm on L?(X, %8, m) and this norm is complete. There-
fore LP(X, %, m) is a Banach space. If L{(X, 4, m) denotes those equivalence
classes containing real-valued functions then L{(X,%,m) is a real Banach
space. The bounded measurable functions are dense in LA(X,%,m). If
m(X)<oo and 1 < p<gq then LYX,4B,m)c LP(X,%,m). We sometimes
write LP(m) or LP(%) instead of LP(X, %, m) when no confusion can arise.

A Hilbert space s is a Banach space in which the norm is given by an
inner product, i.e., # is a Banach space and there is amap (-, *): # x # —
C such that (-, -) is bilinear, (f,g) = (9, f) Vg, f € #, (f, f) = 0Vf € #, and
f =(f,f)"?is thenormon .
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The Banach space LP(X,4%,m) is a Hilbert space iff p = 2. The inner
product in L*(X, %, m) is given by (f,g) = [ fg dm.
In every Hilbert space # we have the Schwarz inequality:

(Sl <A1l llall - ¥, ges2.

Separable Hilbert spaces (i.e. those having a countable dense set) are the
simplest. The space L%(X, %, m) is separable iff (X, %, m) has a countable basis,
in the sense that there is a sequence of elements {E,}{ of % such that for
every ¢ > Oand every B € # with m(B) < oo there issome nwithm(B A E,) <
e. If X is a metric space and 4 is the g-algebra of Borel subsets of X (the
o-algebra generated by the open sets) and m is any probability measure on
(X, %) then (X, %, m) has a countable basis. (This follows from Theorem 6.1.)
Therefore most of the spaces we shall deal with have L*(X, %, m) separable.

Any separate Hilbert space # contains a basis {e,}{, i.e. (e, ¢) =0 if
n # k and only the zero element is orthogonal to all the e,. If {¢,}7 is a
basis then each v € # is uniquely expressible as v = Y =, a,e, where a, € C.
We have

o0 fe ]
lol|* = Zl |a,|> so that Zx |a,? < co.
n= n=

An isomorphism between two Hilbert spaces #;, #, is a linear bijection
W:#, —» #, that preserves norms (||Wv|| = ||v|| Vve #;). The norm-
preserving condition can also be written as (Wu, Wv) = (u,v) Yu, v e #).
Any two separable Hilbert spaces are isomorphic if they both have a basis
with an infinite number of elements. A Hilbert space with a basis of k elements
is isomorphic to C*. An isomorphism of a Hilbert space # to itself is called
a unitary operator.

If Vis a closed subspace of a Hilbert space s then V* = {he #|(v,h) =0
Yve V} is a closed subspace of # and V@ V* = # (i.e. each f € # hasa
unique representation f = f; + f, where f; € Vand f, € V*.) The linear oper-
ator P:s# — V given by P(f) = f; is called the orthogonal projection of #
onto V. In fact P(f) is the unique member of V' that satisfies || f — P(f)|| =
inf {|| f — v|||ve V}. We have P|V = id and (Pf,g) = (f, Pg) Vf, g € #.

Let (X, 4%, m) be a probability space and recall from §0.4 that if € is a
sub-g-algebra of 4 then the conditional expectation operator

E(-/6):L*(X,%,m) - L\(X,%,m)

is defined. Since L*(X,4%,m)c L'(X,%,m) the conditional expectation
operator acts on L*(X, %, m) and the following result describes what this
restriction is.

Theorem 0.12. Let (X, 4, m) be a probability space and let € be a sub-c-algebra
of #B. The restriction of the conditional expectation operator E(:/€) to
L*(X,B,m) is the orthogonal projection of L*(X,%,m) onto L*(X,%,m).
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ProOF. For f € L}(X, %, m) we know E(f/%) is the only ¥-measurable func-
tion h such that [chdm = [ fdm VYC € €. Let P denote the orthogonal pro-
jection of L(X, %, m) onto the closed subspace L*(X,%4,m).If f € L*(X, %, m)
then Pf is ¥-measurable and if C € ¥

Jo rdm= (1) = (f,Pr) = (Pf.1) = [ Pf dm.
Therefore Pf = E(f/%). O

§0.6 Haar Measure

There is a probability measure on a compact group G which ties in with the
group structure on G. This measure is defined on the g-algebra %(G) of all
Borel subsets of G. It will also have the property of regularity. Recall that a
measure m on the Borel g-algebra %#(X) of a compact topological space X
is regular if for every ¢ > 0 and every E € #(X) there is a compact set M
and an open set U with M < E = U and m(U\M) < &. It suffices to require
that for each ¢ > 0 and E € #(X) there is a compact set M with M < E and
m(E\M) < ¢ (since we can also apply this to X\E to get an open set U with
E = U and m(U\E) < ¢). If X is metrisable then any probability measure on
(X, 4(X)) is regular (see Theorem 6.1).

Theorem 0.13. Let G be a compact topological group. There exists a probability
measure m defined on the o-algebra %(G) of Borel subsets of G such that
m(xE) = m(E) Vx € G VYE € %(G) and m is regular. There is only one regular
rotation invariant probability measure on (G, 8(G)).

This unique measure is called Haar measure. Notice we have required
Haar measure to be a probability measure. The Haar measure m also satis-
fies m(Ex) = m(E) Vx € G, VE € %(G), because for each fixed x € G the mea-
sure m, defined by m,(E) = m(Ex) is rotation invariant and regular and hence
equals m. If G is metrisable then, as mentioned above, any probability measure
on (G, %(G)) is regular so we can omit the regularity assumption from the
statement about uniqueness of Haar measure.

The rotation invariance of m can also be expressed by requiring [ f(xy)
dm(y) = [ f(y)dm(y) ¥f € L'(m), ¥x € G.

If U is a non-empty open subset of G then it has non-zero Haar measure,
because G = | J,c6 9U = ¢,U U g,U U -+ U g, U by compactness.

For the circle group K = {z € C||z| = 1} the Haar measure is the normal-
ised circular Lebesgue measure. For the n-torus K" the Haar measure is the
direct product of the Haar measure on K.

If m; is the Haar measure on G, i € Z, then the direct product of the
measures m; is the Haar measure on the direct product group [[2 -, G
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For the two point group {0, 1} the Haar measure gives each point measure
1 so the Haar measure on the direct product group [ [{2 _ , {0, 1} is the direct
product of this measure.

On any compact metrisable group G there is a metric p which is rotation
invariant in the sense that p(gx,gy) = p(x, y) = p(xg, yg) Vg, x,y € G. If d is
any metric on G and m is Haar measure we could take p(x, y) = (({d(gxh, gyh)

dm(g)) dm(h).

§0.7 Character Theory

Many of our examples will be rotations, endomorphisms, or affine transfor-
mations of compact groups. (We mean endomorphism in the sense of
topological groups, i.e., an abstract group endomorphism which is continu-
ous.) In some proofs we will use the character theory of compact abelian
groups which we summarise in this section. For those not familiar with
character theory, proofs in the later sections involving characters will usually
be preceded by the proof in a special case where the group used is the unit
circle and then classical Fourier analysis will be used. The proofs of all results
quoted in this section can be found in Hewitt and Ross [1].

Let G be a locally compact abelian group. Let G denote the collection of
all continuous homomorphisms of G into the unit circle K. The members
of G are the characters of G. Under the operation of pointwise multiplication
of functions G is an abelian group. With the compact open topology G
becomes a locally compact abelian group.

In §0.8 we shall show that when G = K = {z € C| |z| = 1} each element
of K is of the form z — z" for some n € Z. Hence K ~ Z. We also show that
the character group of the n-torus K" is isomorphic to Z" and each y € K"
is of the form

y(zla e ’Zn) = Z}l)l’ 2’2,2’ s azﬁn for some (pl’pZ’ e apn) eZ"
We have the following results.

(1) G has a countable topological basis iff G has a countable topological
basis
(2) G is compact iff G is discrete.

Combining (2) with (1) we have G is compact and metrisable iff G is a
discrete countable group. This allows us to transform some problems about
compact abelian metrisable groups to problems about discrete countable
abelian groups.

(3) (Duality Theorem). (é) is naturally isomorphic (as a topological group)
to G, the isomorphism being given by the map o — a where a(y) = y(a) for
allye G.
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(4) If G is compact then G is connected iff G is torsion free (i.e. has no
elements of finite order apart from the identity element.)

(5) If G,, G, are locally compact abelian groups then G, x G, = G, x
G,. (Here “ x ” denotes direct product.) Hence all characters of G; x G, are
of the form (x, y) = 3(x)d(y) where ye G,, d € G,.

(6) If I' is a subgroup of G then H = {ge G|y(g) =1 VyeT}is a closed
subgroup of G and (G/H) I'. Notice it makes sense for elements of I" to
act on G/H and this result says that these are the only continuous homomor-
phisms of G/H into K.

(7) If H is a closed subgroup of G and H # G there exists aye G, y # 1
such that y(h) = 1 Vh € H. (We shall write this y(H) = 1.)

(8) Let G be compact. The members of G are mutually orthogonal mem-
bers of L%(m), where m is Haar measure.

ProOF. It suffices to show
fG p(X)dm(x) =0 ify# L.

If a € G, then, since m is a Haar measure,

f(x) dm(x fy (ax)dm(x) = y(a) f p(x) dm(x).
Choosing a so that y(a) # 1 we have [y(x) dm(x) = 0. O

9) If G is compact, the members of G form an orthonormal basis for
L?(m) where m is Haar measure.

This is part of the Peter—Weyl theorem and can be easily deduced from
the Stone—Weierstrass theorem, which implies that finite linear combinations
of characters are dense in C(G), the space of complex-valued continuous
functions of G.

Therefore for each f e L%m) there are uniquely determined complex
numbers a, such that f = ZyEG ay in L%(m). This means Ve > 0 there is a
finite subset Joof G such thatif J is finiteand J o = J then || f — Y, .5 a,]]> <
e. Only a countable number of a, are non-zero. We have ) ,.¢la,|* = || f]|3 <
co. This representation of f is called the Fourier series of f. When G = K =
{z € Cl|z| =1} the Fourier series of f is the classical Fourier series f(2)

Y a,2" since G consists of the maps y(z) = z", ne€ Z.

(10) If A:G > G is an endomorphism we can define the dual endomor-
phism A:G - G by Ay = yo A, ye G. It is easy to see that A is one-to-one
if and only if 4 is onto, and A is onto if and only if A is one-to-one. Therefore
A is an automorphism if and only if 4 is an automorphism.

Recall that for compact groups G, G is metrisable iff G has a countable
topological base.
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§0.8 Endomorphisms of Tori

We shall view the n-torus in two ways: multiplicatively as K" and additively
as R"/Z" where R" is the additive group of n-dimensional Euclidean space
and Z"is the subgroup of R" consisting of the points with integer coordinates.
A topological group isomorphism from K" to R"/Z" is given by

(€™ ePm ) s (X, ..., X,) + 2

Theorem 0.14

(i) Every closed subgroup of K is either K or is a finite cyclic group con-
sisting of all p-thyoots of unity for some integer p > 0.

(ii) The only automorphisms of K are the identity and the map z+>z" .

(i) The only homomorphisms of K are the maps ¢,(z) = z", ne Z.

(iv) The only homomorphisms of K" to K are maps of the form

(z4y...,z)—> 2 -+ -z wheremy,...,m,eZ.
PRrOOF. Let d denote the usual Euclidean metric on K which is a rotation

invariant metric on K.

(i) Let H be a closed subgroup of K. If H is infinite it has a limit point
so Ve > 03a,b e H withd(a,b) < e and a # b. Then d(b~'a, 1) < ¢, and there-
fore the powers of b~ 'a are e-dense in K. Therefore H is e-dense in K and
H=K. '

If H is finite and has p elements then a”? = 1 Va € H. So each element of
H is a p-th root of unity, and since there are p elements in H, H must consist
of all the p-th roots of unity.

(ii) Let 0: K — K be an automorphism. We have 6(1) = 1. Since — 1 is the
only element of K of order 2 we have §(—1) = — 1. Since i, —i are the only
elements of order 4 either 0(i) = iand (—i) = —ior6(i) = —iand 0(—i) = i.
Consider the first case. Since 0 maps intervals to intervals, the interval fl,—zj
from 1 to i is either mapped to itself or to [i, 1] (all intervals go anticlockwise).
Butsince [1,] does not contain — 1 it cangot be mapped to [i,1]s0 0[1,i] =
[1,i]. The only element of order 8 in [1,i] is e™/* and so this must be fixed
by 6. Therefore 0[ 1,e™/*] = [1, e"/*]. By induction one shows that 0(e>"/?")
= e2™/?" for each k > 0. It follows that 0 fixes all the 2*-th roots of unity
Yk > 0 and hence is the identity. In the second case one shows that (e*™/%*) =
e 2"/2* ¥k > 0 and hence 0(z) = z7 %, ze K.

(iii) Let §: K — K be an endomorphism. If 0 is non-trivial, its image, 6(K),
is a closed connected subgroup of K and so (K) = K by (i). The kernel Ker
0 is a closed subgroup of K so either Ker 6 = K or Ker 0 = H,, the group
of all p-th roots of unity, for some p. The first case corresponds to trivial 6.
If Ker 0 = H,, let a,: K/H, — K be the isomorphism given by a,(zH,) = 27,
andletf,:K/H, — K be the isomorphism induced by 0 (0,(zH,) = 0(z)). Then
0,0, ' is an automorphism of K and by (ii) either 6,0, '(z) =z Vze K or
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0,0, '(z) = z~! Vz € K. Hence either 0(z) = 0,(zH,) = 0,0, '(z) = 2 Vze K
orf(z)=z"?Vze k.

(iv) Let y;: K — K" be the homomorphism that imbeds K in the i-th com-
ponent of K", ie. y;(z) =(1,1,...,1,21,...,1), where z appears in the i-th
component. If 8: K" — K is a homomorphism then 6 o y;: K — K is an endo-
morphism and so 0 o y,(z) = z™ for some m; € Z by (iii). Hence

0(21, e ,Zn) = 0('))1(21) : 'VZ(ZZ) T yn(zn))
= 071(21) - Oya(z5) - -~ - Opi(2,)
=M g e g 0O
The following theorem says that each endomorphism of K" is determined
by an n X n matrix with integer entries.

Theorem 0.15

(i) Every endomorphism A:K" — K" is of the form:
A(zy, ... z) = (290 -z oz )
where each a;; € Z. In additive notation,
X1 X1
all ) +zr)=la]| ¢ |+ 2"

X, X

n n

where [a;;] denotes the n x n matrix with (i, j)-th element a;;.
(i) A maps K" onto K" iff det[a;;] # 0.
(iii) A is an automorphism of K" iff det[a;;] = +1.
PROOF

(i) Let m;: K" - K be the projection to the i-th coordinate. Then

n; o A: K" — K is a homomorphism, so by (iv) of the previous theorem
Tyo A(zy, ..., 2,) = 2% - 242+ -« - g0

where a;; € Z.

(ii) Assume det[a;;] = 0. Since the rows of [g;;] are linearly dependent
over the rationals there exist integers m,, ..., m, not all zero such that
myA; + -+ m,A, =0 where 4, is the i-th row of [a;;]. Then each point
(wy,...,w,) of K" in the image of A satisfies w7' - - wi» = 1. Thus
A(K") # K" If det[a;;] # O then the linear map of R" determined by the
matrix [a;;] maps R" onto R" and hence A maps K" onto K".

(iii) If A is an automorphism represented by a matrix [A4] then 47! is
also an automorphism represented by a matrix [B], and since AA™! =1 =
A~ 'Awehave that[ B] =[4] . Since [ B] is an integer matrix, det[4] = + 1.
Conversely, if det[4] = +1, [4]™! has integer entries and hence defines
an endomorphism B of K" satisfying AB = BA = I. O
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Therefore the surjective endomorphisms of K" are in one-to-one corre-
spondence with the n x n integral matrices with non-zero determinant.

If A is an endomorphism of the n-torus, [A] will always denote the
associated matrix and 4 will denote the linear transformation of R" deter-
mined by [4]. So if n:R" — R"/Z" is the natural projection (n(x) = x + Z")
we have nd = Am.

Let A:K" — K" be an endomorphism. We now consider how the map
A:K" - K" (introduced in §0.7) acts as a map of Z" when K" is identified
with Z" by the isomorphism:

m

m, h = M1 . M2 . ... Mn
1and B when y(zy, 25, . .., z,) = 27* - 23 Zn'"

m

n

One readily checks that the endomorphism A:Z" — Z" is given by

my my
V| = [A]t
m

n mn

where [ A], denotes the transpose of the matrix [ A4].

§0.9 Perron—Frobenius Theory

Let A = [a;;] be a k x k matrix. We say A is non-negative if a;; > 0 for all i, j.
Such a matrix is called irreducible if for any pair i, j there is some n > 0 such
that a{f > 0 where a{") is the (i, j)-th element of A". The matrix 4 is irreducible
and aperiodic if there exists n > 0 such that af > 0 for all i, j. We shall use

the following result (see Gantmacher [1])

Theorem 0.16 (Perron—Frobenius Theorem). Let A = [a;;] be a non-negative
k x k matrix.

(i) There is a non-negative eigenvalue A such that no eigenvalue of A has
absolute value greater than A.

(i) We have min; (3 %_; a;) < A < max; 3 %_; a;)).

(iii) Corresponding to the eigenvalue A there is a non-negative left (row)

eigenvector u = (uy, . . ., w,) and a non-negative right (column) eigenvector
Uy
V=
Uk

(iv) If A is irreducible then A is a simple eigenvalue and the corresponding
eigenvectors are strictly positive (i.e. u; > 0, v; > 0 all i).
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(v) If Aisirreducible then A is the only eigenvalue of A with a non-negative
eigenvector.

Let A be an irreducible non-negative matrix and let A, u, v be as in Theorem
0.16. Define the k x k matrix P = [p;;] by p;; = a;;v;/Av;. Then 0 < p;; <1
and Y *_, p;; = 1 for all j, so that P is a stochastic matrix. Normalise u and v
so that if p; = uw; then Y *_, p;= 1. Then p = (py,...,p,) is an invariant
probability vector for P in the sense pP = p. If A is irreducible and aperiodic
we can use a standard result in probability theory to get the following
theorem.

Theorem 0.17. Let A be an irreducible and aperiodic non-negative matrix. Let
u=(uyg,...,u), v=

be the strictly positive eigenvectors corresponding to the largest eigenvalue A
as in Theorem 0.16. Then for each pair i, j lim,_,,, A~ "a{? = u;v;.

This theorem follows from the renewal theorem which we shall need for
another purpose (see Feller [1], p. 291).

Theorem 0.18 (Renewal Theorem). Let {c,}§ and {u,}& be bounded sequences
of real numbers with 0 < c, <1 and d, > 0 for all n. Suppose the greatest
common divisor of all integers n with c, > 0 is one. Suppose {u,}§ satisfies
Uy =d, + Colly + Cylly_y + "+ Cug foralln. If Yoo c,=1and Y3 d, <
oo then lim,_, o u, = ()& d,)O.¥ nc,)~* where this is interpreted as zero if
Y& ne, = 0.

§0.10 Topology
We shall be interested in compact metric spaces. There is the following result.

Theorem 0.19. Let X be a compact Hausdorff space. The following are
equivalent:

(1) X is metrisable.

(2) X has a countable base.

(3) C(X) (the space of all complex-valued continuous functions on X) has
a countable dense subset.

See Kelley [1] for the proof.
We shall usually denote the metric on a space X by d, and the open ball
of centre x, and radius r by B(x,; r). The diameter of a subset 4 of X will be
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denoted by diam(A), the closure of 4 by A4, the interior of A by int(4) and the
boundary of A by d4A. We have d(A\B) = 4 u dB, d(A N B) = 04 U 0B
and 0(A v B) = 04 v 0B.

When X is compact the space C(X) is a Banach algebra with norm
| /Il = sup{|f(x)|:x € X}. We shall use C(X,R) to denote the real Banach
algebra of all continuous real-valued functions on X.

We shall be interested in open covers of X and we shall use the following
basic result.

Theorem 0.20 (Lebesgue Covering Lemma). If (X, d) is a compact metric
space and o is an open cover of X then there exists a 6 > 0 such that each
subset of X of diameter less than or equal to J lies in some member of o. (Such
a 0 is called a Lebesgue number for o.)

PrOOF. We may as well suppose « is a finite cover.

Let a = {4,,...,A,}. Assume the theorem is false. Then for each n > 1
there exists B, < X such that diam(B,) < 1/n and B, is not contained in any
A;. Choose x, € B, and select a subsequence {x,} which converges, say
x,, = X. Suppose x € A;e a. Let a =d(x,X\A;) > 0. Choose n; such that
n; > 2/a and d(x, ,x) < a/2. Then if y € B,

1
A3, 5 d(rxy) + dly ) < -+ S <

1

Hence B,, € A4}, a contradiction. ‘ O

If o is a cover of X, we write diam(a) for sup{diam(A4)|4 € a}.

There is a natural g-algebra of subsets of a compact metric space X. This
is the g-algebra, 4(X), of Borel subsets of X which is defined to be the
smallest o-algebra containing all the open subsets of X. Every complex-
valued continuous function on X is measurable relative to this o-algebra.



CHAPTER 1
Measure-Preserving Transformations

In this chapter we shall discuss measure-preserving transformations and some
of their basic properties.

§1.1 Definition and Examples

Definition 1.1. Suppose (X, %, m,), (X,,%,,m,) are probability spaces.

(a) A transformation T:X, = X, is measurable if T™Y(%,) = %, (ie.
B,e%,= T 'B,c %)).

(b) A transformation T: X, — X, is measure-preserving if T is measurable
and m,(T~!(B,)) = my(B,) VB, € 4,.

(c) We say that T:X, - X, is an invertible measure-preserving trans-
formation if T is measure-preserving, bijective, and T~! is also measure-
preserving,

Remarks

(1) We should write T:(X,,%;,m;)— (X,,%,,m,) since the measure-
preserving property depends on the %’s and m’s.

@ If T:X,-X, and S:X,— X; are measure-preserving so is
SoT:X; - Xs;.

(3) Measure-preserving transformations are the structure preserving maps
(morphisms) between measure spaces.

(4) Let (X, %4;,m;) denote the completion of (X;,#;,m)i=1,2.1f T:(X,,
B,,m,) > (X,,%B,,m,) is measure-preserving then so is T:(X,%,,m) -
(X,,%,,m,). Recall that &, is the collection of sets B; A F; where B; € %;

19
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and F; is a subset of an element N; of 4; of zero measure and m;(B; A F)) =
my(B;).Then T~ (B, AF,)=T 'B, AT 'F,whereT"'B,e#,,T"'F, c
T~ 'N, and m,(T"'N,) = my(N,) = 0. Therefore T~'(B, A F,)€ %, and
iy (T~ By A F)) = my(T™'By) = my(B,) = ifiy(B, A F).

(5) We shall be mainly interested in the case (X, #,m;) = (X,,%,,m,)
since we wish to study the iterates T". When T:X — X is a measure-
preserving transformation of (X, %, m) we say that T preserves m or that m is
T-invariant.

In practice it would be difficult to check, using Definition 1.1, whether a
given transformation is measure-preserving or not since one usually does not
have explicit knowledge of all the members of 4. However we often do have
explicit knowledge of a semi-algebra & generating 4 (for example, when X
is the unit interval & may be the semi-algebra of all subintervals of X, and
when X is a direct product space & may be the collection of all measurable
rectangles). The following result is therefore desirable in checking whether
transformations are measure-preserving or not.

Theorem 1.1. Suppose (X |, %,,m,), (X,,9%B,,m,) are probability spaces and
T:X, — X, is a transformation. Let &, be a semi-algebra which generates
B,. If for each Aye S, we have T~ (A,) e B, and m(T~*(4,)) = m,(A4,)
then T is measure-preserving.

PROOF. Let 4, = {Be #,: T~ '(B) € #,, m,(T~(B)) = my(B)}. We want to
show that ¥, = #,. However &%, < %, and since each member of the
algebra /(¥ ,) generated by &, is a finite disjoint union of members of &,
we have o/ (¥,) = €,. Since ¥, is easily seen to be a monotone class, the result
follows since the og-algebra generated by «/(¥,) is the monotone class
generated by (& ,). O

Examples of Measure-Preserving Transformations

(1) The identity transformation I on (X,%,m) is obviously measure-
preserving.

(2) Let K = {z e C:|z| = 1}, let & be the o-algebra of Borel subsets of K
and let m be Haar measure. Let a € K and define T:K — K by T(z) = az.
Then T is measure-preserving since m is Haar measure. The transformation
T is called a rotation of K.

(3) The transformation T'(x) = ax defined on any compact group G (where
a is a fixed element of G) preserves Haar measure. Such transformations are
called rotations of G.

(4) Any continuous endomorphism of a compact group onto itself
preserves Haar measure.
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PROOF. Let A:G — G be a continuous endomorphism and let m denote Haar
measure on G. Define a probability measure on the Borel subsets of G by
W(E) = m(A~Y(E)). The measure u is regular since m is regular.

Also pu(Ax - E)=m(A *(Ax - E)) = m(x - A~*E) = u(E). Since A maps
G onto G we see that p is rotation invariant and therefore u = m by the
uniqueness property of Haar measure. This shows A4 is measure-preserving.

O

For example T(z) = z" preserves Haar measure on the unit circle if
ne Z\{0}.

(5) Any affine transformation of a compact group G preserves Haar
measure. An affine transformation is a map of the form T(x) = a - A(x) where
a e G is fixed and 4:G — G is a surjective endomorphism. It follows that T
is measure-preserving because it is the composition of a rotation and an
endomorphism. (See remark (2).) When 4 = I we have example (3) and when
a is the identity element of G we have example (4). We shall see that examples
3 and 4 have very different behaviour and so we expect the class of affine
transformations to provide examples with a range of interesting behaviours.

When dealing with affine transformations as measure-preserving trans-
formations we always assume the measure involved is normalised Haar
measure. \

(6) Let k > 2 be a fixed integer and let (py, py, - - - , Px—1) be a probability
vector with non-zero ehtries (i.e., p; > 0 eachiand Y ¥24 p; = 1). Let (Y, 2", p)
denote the measure space where Y = {0,1,...,k — 1} and the point i has
measure p;. Let (X,%,m) =[]2,(Y,2",p). Define T:X - X by T({x,}) =
{y.} where y,=x,,;. If & denotes the semi-algebra of all measurable
rectangles then m(T~'4) = m(4) YA € &. By Theorem 1.1, T is measure-
preserving. We call T the two-sided (pq, - . ., Px—1)-shift. (The description
“two-sided” refers to the fact that the direct product ranges over all integers
rather than just the non-negative integers.) This is an example of an invertible
measure-preserving transformation. We sometimes use the notation
(...,X_1XoXy,...) for a point of X (the * indicates the O-th position in the
product) and then T can be written T((...,X_1XoXg,...))=0( ..,
X_1XoX1X5,...). The set Y is called the state space of the shift.

(7) Let (Y,2", u) be as in example (6) and let (X, B, m) = [[5 (Y,2", p). If
we write points of X in the form (x4, Xy, .. .), x; € Y, then define T: X —» X
by T(xq,X1,X5,...) = (X{,X5,...). By considering the semi-algebra of
measurable rectangles and using Theorem 1.1 we see that T is measure-
preserving. This transformation is called the one-sided (p, - - - , Py - 1)-shift.
It is not an invertible measure-preserving transformation.

(8) Fix an integer k > 2 and consider the measurable space (Y, 2¥) where
Y=1{0,1,...,k —1}. Let (X, %) denote the direct product space (X, %) =
[[2.(Y,2"). Let T:X > X denote the shift transformation defined (as in
example (6)) by T((...,X_;1XoX1,...))=(...,X_1XoX1X,,...). We shall
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now obtain many probability measures on (X, %) which make T a measure-
preserving transformation (in fact all of them are obtained in this way).
Whenever n > 0 and a; € Y(0 < i < n) suppose a real number p,(ay, - - . ,a,)
is given such that

(l) Pn(ao, e ,an) = Oa
(i1) Z Polag) = 1;

apeY

(111) Pn(ao, v an) = Z v pn+1(a0> sy, an+1)'

n+1€

If we define m on the semi-algebra of measurable elementary rectangles
by m({(x;) € X|x,=ao, ..., Xg1n=0an}) = pdo, .. .,a,) then m can be
extended to a probability measure on (X, %) by Theorem 0.5 and T preserves
the measure m by Theorem 1.1.

To obtain example (6) we take p,(ao, - ..,a,) = psPa, *** Pa, Another
important collection of examples is provided by the Markov chains. Here
we are given a probability vector P=(PosP1>-+->Dk— 1) and a stochastic
matrix P = (p;))ijey (pij = 0, Y %24 pi; = 1) such that Y 2§ p;pi; = p;, and we
put p,(ao, - . -, ay) = PagPaga,Paay " " * Pa, - 1a,- W call this measure-preserving
transformation the two-sided (p, P)-Markov shift. We always assume p; > 0
for all i, for if p; = O for some i then we could eliminate i from the state space
because all rectangles containing i would have zero measure. The two-sided
(Pos - - - » Px—1)-shift can be considered as a Markov shift by taking p =
(Pos - - - »Pxk-1) and p;; = p;

The corresponding one-sided transformations can easily be defined.

(9) Let X be a compact metric space and let T: X — X be continuous. We
shall see later (in Chapter 6) that there is always at least one probability
measure m defined on the g-algebra of Borel subsets, #(X), of X such that T
is a measure-preserving transformation of (X, %(X),m). In particular any
diffeomorphism of a compact smooth manifold has at least one invariant
probability measure on the Borel subsets of the manifold.

(10) Given any set X, any probability space (X ,,%,,m,) and any map
T:X; - X, of X, onto X, we can choose a g-algebra %, and a measure m;
on X, to make T measure-preserving. In fact let #, = T~ '%, and define
my by m;(T™!B,) = my(B,).

Conversely, if (X;,%,,m,) is any probability space, X, any set and
T:X, - X, any map of X; onto X,, then we can choose a g-algebra %,
and a measure m, on X, so that T is measure-preserving. Put

#B,={B:Bc X,and T"'Be 4,}
and my(B) = m,(T~'B) for Be 4,.

In remark (2) we have given one way of obtaining a new measure-
preserving transformation from two given ones. Another way of constructing
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a new measure-preserving transformation from two given ones is by direct
products:

Definition 1.2. Let T;: X; —» X; be a measure-preserving transformation of a
probability space (X;, %;,m;) for i = 1, 2. The direct product T, x T, is the
measure-preserving transformation of (X; x X,, %, x %#,, m; X m,) given
by (Ty x To)(xq,x2) = (Ty(xy), To(x2)).

This transformation is measure-preserving because it clearly preserves the
measure of rectangles, and Theorem 1.1 can then be used. In a similar way
one can define the direct product of any finite or countable number of
measure-preserving transformations.

As we have mentioned before we shall be interested in the study of the
powers T" ne Z, of a given measure-preserving transformation 7T:X — X
of a probability space (X, 4, m).

§1.2 Problems in Ergodic Theory

There are two types of problems in measure-theoretic ergodic theory. The
first type, which we call internal problems, are concerned with understanding
measure-preserving transformations and trying to decide when two of them
are isomorphic. In the rest of this chapter we study general properties of
measure-preserving transformations and in Chapter 2 we consider the
isomorphism problem. The attacks on the isomorphism problem usually
involve searching for isomorphism invariants. We say more about this in
Chapter 2.

The second type of problem involves applications of measure-theoretic
ergodic theory. How can this theory be applied to problems in other branches
of mathematics and physics? The problems that can be tackled using ergodic
theory have a formulation in terms of a transformation T of a space X and
the problem involves studying the asymptotic properties of T (i.e., T" for
large n). The space X usually carries some structure (e.g. X is a topological
space or a smooth manifold) and T preserves this structure (e.g. T is a homeo-
morphism or a diffefomorphism). Then one needs to find a measure on X
which is preserved by T and which is a useful measure for the problem. For
example if T is a map of the unit interval (or of a smooth manifold) we may
like the invariant measure to have the same null sets as Lebesgue measure
(or the same null sets as a smooth measure) so that any conclusions we make
would hold for almost all points relative to Lebesgue measure. In these
applications one needs to find the most suitable measure for the particular
problem. As we shall see in Chapter 6, a given transformation of a measurable
space may preserve many measures.
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As an example suppose we wish to study continued fraction expansions
of points in (0, 1). This leads to the transformation

. 0 ifx=0
T:[0,1) - [0,1) given by T(x) = {{l/x} ifx 0
where {y} denotes the fractional part of a positive real number y. This is
because the n-th partial quotient of an irrational number x is a(T"x) where
a:(0,1) - Z is given by a(y) = [1/y], the integer part of 1/y. So the partial
quotients are expressable in terms of one function and the iterates of T. It
turns out that T preserves the Gauss measure on [0, 1) given by

e 1
T log2J4a1+x

m(A)

where [ denotes Lebesgue measure. Therefore m has the same null sets as [
and so any statement which holds almost everywhere for m will hold almost
everywhere for [. For example one can deduce from the ergodic theorem
(Theorem 1.14) that for almost every point x of [0, 1) (relative to Lebesgue
measure) the relative frequency of the natural number k in the partial
quotients of x is

1 1/k 1 1 (k + 1)?
— dl = og .
log2 Jik+11 4 x log 2 k(k +2)

A corresponding situation arises in Hamiltonian mechanical systems.
Here we have a one-parameter family { T}, g of difftomorphisms of a certain
manifold M and the classical Lioville theorem gives a smooth measure on M
preserved by each transformation T.

In Chapters 6, 8, and 9 we shall study invariant probability measures for a
given continuous transformation of a compact metric space, and we shall
consider some canonical ways of choosing certain invariant measures.

We now continue the study of the general theory of measure-preserving
transformations.

§1.3 Associated Isometries

To any measure space (X,%,m) one can associate the Banach-spaces
LP(X,%,u) = {f:X - C| f is measurable and [|f|*dm < oo} (p > 1). These
spaces are some of the most useful tools for dealing with problems taking
place on measure-spaces. Since a measure-preserving transformation T is a
morphism of measure spaces we would expect to be able to associate to T
a morphism of L? spaces. We now describe this.

Let L°(X,%,m) denote the space of all complex-valued measurable
functions of (X, 4, m) (where two functions are identified if they are equal
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almost everywhere) and let Ly(X, %, m) denote the real-valued members of
L°(X, B, m).

Definition 1.3. Let (X, 4;, m;) be a probability space, i =1,2. If T: X | - X,
is measure-preserving the induced operator Ur:L%(X,,%,,m,;) —» L%(X,,
B1,m,) is defined by (Urf)(x) = f(Tx), f € LAX ,,B,,m,), x € X .

Clearly, Uy is linear and U;L{(X,,%B,,m,) = LYX,,%B,,m,). Also,
Ur(f-9)=(Urf)Uzg) and Uypc = ¢ where ¢ denotes a constant function.
If f >0 then Upf >0 so Uy is a positive operator. Notice also Uryp =
Yr-15, B€ %B,. We want to show that U;L"(X,,#,,m,) = L*(X,,B,,m,).
This will follow from the following simple result.

Lemma 1.2. Let (X;, 8B;,m;) i = 1, 2 be a probability space and let T:X | - X,
be measure-preserving. If F e L%X,,B,,m,) then [UrFdm, = [Fdm,
(where if one side doesn’t exist or is infinite, then the other side has the same
property).

PRrOOF. It suffices to prove the result when F is real-valued and, by considering
positive and negative parts of F, it suffices to consider non-negative functions.
So suppose F > 0. If F is a simple function then the result is true because
T is measure-preserving. Choose simple functions F, increasing to F. Then
U F, are simple functions increasing to U, F so

fUTde1 = lim fUTF,,dml = lim fF”dedemz. O

n— oo n— oo

Theorem 1.3. Let p > 1. With the above notation UL*(X,, B, m,) <
LP(X,,B1,my) and |Urf||, = || f|l,¥f € L(X 5, #B,,m;). Also

UTL;;(XZ’ Byymy) < Lﬁ(Xl, By, my).

PrOOF. Let f e LP(X,,%,,m,). Put F(x)=|f(x)]” in Lemma 12 to get
”UTf”p = “f”p O

Therefore a measure-preserving transformation T:X,; —» X, induces a
linear isometry of LF(X,,%,,m,) into LF(X,%,,m,) for all p > 1. In par-
ticular if T:X — X is an invertible measure-preserving transformation of
(X,4%,m) then Uy is a unitary operator on L%(X, %, m). The study of Uy is
called the spectral study of T and we shall see later how this is useful in
formulating concepts such as ergodicity and mixing and also in helping
with the isomorphism problem for measure-preserving transformations.

If T;:X, - X,, T,:X,— X, are measure-preserving then Ur,.r, =
Ur, ° Ur, so that if T:X — X is measure-preserving U = (Up)", ne Z™.
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§1.4 Recurrence

One property that is enjoyed by all measure-preserving transformations is
recurrence:

Theorem 1.4 (Poincaré’s Recurrence Theorem). Let T: X — X be a measure-
preserving transformation of a probability space (X,%,m). Let E € # with
m(E) > 0. Then almost all points of E return infinitely often to E under positive
iteration by T (i.e., there exists F = E with m(F) = m(E) such that for each
x € F thereis a sequence n; < n, < ns < * - * of natural numbers with T"(x)e F
for each i).

PrOOF. For N >0 let Ey = | Ji2y T™"E. Then (\j-o Ey is the set of all
points of X which enter E infinitely often under positive iteration by T.
Hence the set F=E n ﬂ,‘j‘;o Ey consists of all points of E that enter E
infinitely often under positive iteration by T. If x € F then there is a sequence
0 < n; < n, <--- of natural numbers with T"(x) € E for all i. For each i
we have T"(x) e F because T ™(T"x) e E for all j. It remains to show
m(F) = m(E).

Since T™'Ey = Ey,; we havem(Ey) = m(Ey ;) and hence m(E,) = m(Ey)
forall N.Since E, > E; o E; o - - we have m([\¥= o Ex) = m(E,). Therefore
m(F) = m(E n E,) = m(E) since E < E,,. O

Remarks

1. In the proof the measure-preserving property of T was used only in
the weaker form of incompressibility (i..,if Be Zand T~ !B = Bthenm(B) =
m(T ~!B)). Therefore Theorem 1.4 is true for incompressible transformations.

2. Theorem 1.4 is false if a measure space of infinite measure is used. An
example is given by the map T(x) = x + 1 defined on Z with the measure
on Z which gives each integer unit measure. For this example if E denotes
the set {0} then the sets Ey all have infinite measure but (-, Ey is empty.

§1.5 Ergodicity

Let (X, %, m) be a probability space and T: X — X be a measure-preserving
transformation. If T~ !B = B for B € 4, then also T~ }(X\B) = X\B and we
could study T by studying the two simpler transformations T|g and T|x\z-
If 0 < m(B) < 1 this has simplified the study of T.If m(B) = 0 (orm(X\B) = 0)
we can ignore B (or X\B) and we have not significantly simplified T since
neglecting a set of zero measure is allowed in measure theory. This raises the
idea of studying those transformations that cannot be decomposed as above
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and of trying to express every measure-preserving transformation in terms
of these indecomposable ones. The indecomposable transformations are
called ergodic:

Definition 1.4. Let (X, 4%, m) be a probability space. A measure-preserving
transformation T of (X, 4%, m) is called ergodic if the only members B of
2 with T~ 'B = B satisfy m(B) = 0 or m(B) = 1.

There are several other ways of stating the ergodicity condition and we
present some of them in the next two theorems.

Theorem 1.5. If T:X — X is a measure-preserving transformation of the
probability space (X, B, m) then the following statements are equivalent:

(i) T is ergodic.

(ii) The only members B of # with m(T~'B A B) =0 are those with
m(B) = 0 or m(B) = 1.

(iii) For every A € B with m(4) > 0 we have m(| )=, T™"A4) = 1.

(iv) For every A, B e # with m(A) > 0, m(B) > 0 there exists n > 0 with
m(T™"A n B) > 0.

PROOF

(i) = (ii). Let Be # and m(T~'B A B)=0. Weshall constructaset B, with
T 'B, =B, andm(B A B,) = 0.Foreachn > Owehavem( “"BAB)=

because T "B A B | Jod T+ DB A T-IB = U T-'B A B) and
hence m(T~"B A B) < nm(T~'B A B). Let B, = (2o °°  T™'B. By the
above we know m(BA ()2, T™'B) < Y2, B AT 'B) = 0 for each

n > 0. Since the sets | )2, T~ B decrease w1th n and each has measure
equal to B we have m(B,, A\ B) = 0and hence m(B,,) = m(B). Also T"'B_, =

“ ZT DB =2 J2uss T""B=B,. Therefore we have
obtamed a set B, with T"'B_ = B, and m(B,, A B) = 0. By ergodicity we
must have m(Boo) =0orl and hence m(B) = 0 or 1.

(il) = (iii). Let A€ # and m(4) > 0. Let 4, =\ );>; T "A. We have
T '4, c A, and since m(T 'A4,) = m(A,) we have m(T"*4; A A;) =0.
By (ii) we get m(4,) = 0 or 1. We cannot have m(4,) = O because T4 < A4,
and m(T~'A4) = m(A) > 0. Therefore m(4,) = 1.

(iif) = (iv). Let m( ) > 0and m(B) > 0. By (iii) we havem(| J;~, T "A)=1
so that 0 <mB)=mB )&, T ") =m(JX BN T" "A) Therefore
mBn T "4) > 0 for some n > 1.

(iv) = (i). Suppose Be % and T !B = B. If 0 < m(B) < 1 then 0 =
m(B n (X\B)) = m(T "B n (X\B)) for all n > 1, which contradicts (iv). [

Remark. Notice that we could replace (iii) by the statement “For every 4 € #
with m(4) > 0 and every natural number N we have m(| oy T7"4) = 1"
because | )iy T7"4 = T~ V({720 T~"A4). Consequently we could replace
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(iv) by “for every A, B € # with m(A4) > 0, m(B) > 0 and every natural number
N there exists n > N with m(T™"4 nB) > 0”. One can think of (iii) and (iv)
as saying that the orbit {T~"A4};2, of any non-trivial set A sweeps out the
whole space X (or that each non-trivial set A has a dense orbit in a measure-
theoretical sense).

The next theorem characterises ergodicity in terms of the operator Uy.

Theorem 1.6. If (X,%,m) is a probability space and T:X — X is measure-
preserving then the following statements are equivalent:

(i) T is ergodic.

(i) Whenever f is measurable and (f o T)(x) = f(x) Vx€ X then f is
constant a.e.

(iil) Whenever f is measurable and (f o T)(x) = f(x) a.e. then f is constant
a.e.

(iv) Whenever f € L*(m) and (f o T)(x) = f(x) Vx € X then f is constant
a.e.

(v) Whenever f € L% (m) and (f o T)(x) = f(x) ae. then f is constant a.e.

PROOF. Trivially we have (iii) = (ii), (ii) = (iv), (v) = (iv), and (iii) = (v). So
it remains to show (i) = (iii) and (iv) = (i). We first show (i) = (iii). Let T
be ergodic and suppose f is measurable and f o T = f a.e. We can assume
that f is real-valued for if f is complex-valued we can consider the real
and imaginary parts separately. Define, for k€ Z and n > 0,

= {x:k/2" < f(x) < (k + 1)/2"} = f~1([k/2", (k + 1)/2™)).

We have
T X (k,n) A X(k,n) = {x:(f o T)(x) # f(x)}

and hence m(T~'X(k,n) A X(k,n)) =0 so that by (ii) of Theorem 1.5
m(X(k,n)) =0 or 1.

For each fixed n | J;.z X(k,n) = X is a disjoint union and so there exists a
unique k, with m(X(k,,n)) = 1. Let Y = ()., X(k,,n). Then m(Y) = 1 and
f is constant on Y so that f is constant a.e.

(iv) = (i). Suppose T"'E = E, E € 4. Then yz € L*(m) and (xg o T)(x) =
1e(x) Vx € X so, by (iv), xg is constant a.e. Hence y; = 0 a.e. or yz = 1 a.e. and

E) = [ygdm=0or 1. O

Remarks

(1) A similar characterization in terms of Lf(m) functions (for any p > 1)
is true, since in the last part of the proof yg is in LF(m) as well as L*(m).
Also we could use real L*(m) spaces.
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(2) Another characterization of ergodicity of T is: whenever f: X — R is
measurable and f(Tx) > f(x) a.e. then f is constant a.e.

This is clearly a stronger statement than (iii). To see that ergodicity implies
the stated property, let T be ergodic and suppose f(Tx) > f(x) a.e. If f is
not constant a.e. then there is some ¢ € R with B = {x € X| f(x) > ¢} having
0<m(B)<1.But T"'B> Bsom(T !B A B)=0 and hence m(B) =0 or
1. This contradicts 0 < m(B) < 1.

We want to analyse our examples to see which of them are ergodic. The
next result will be useful for this and it also relates the idea of measure-
theoretic dense orbits (Theorem 1.5(iii) and (iv)) to the usual notion of dense
orbits for continuous maps. We shall say more about this in Chapter 6.
Recall that the o-algebra of Borel subsets of a topological space is the
o-algebra generated by the open sets.

Theorem 1.7. Let X be a compact metric space, %(X) the a-algebra of Borel
subsets of X and let m be a probability measure on (X, B(X)) such that
m(U) > 0 for every non-empty open set U. Suppose T:X — X is a continuous
transformation which preserves the measure m and is ergodic. Then almost all
points of X have a dense orbit under T i.e. {x € X|(T"x)7, is a dense subset
of X} has m-measure one.

PrOOF. Let {U,},%; be a base for the topology of X. Then {T"x|n > 0} is
densein X iff xe (72, (Jizo T7*U,.Since T~ ((Ji2o T *U,) = Ui o T™*U,
and T is measure-preserving and ergodic we have m(| )iz, T~*U,) =0or 1.
Since | Ji~o T~*U, is a non-empty open set we have m(| )iz, T~*U,) = 1.
The result follows. O

Note that this result is applicable when m is Haar measure on a compact
metric group and T is an affine transformation which is ergodic.
We shall now see when the examples of §1 are ergodic.

(1) Clearly the identity transformation on (X,4%,m) is ergodic iff all
members of % have measure 0 or 1.

(2) We have the following theorem concerning rotations of the unit
circle K.

Theorem 1.8. The rotation T(z) = az of the unit circle K is ergodic (relative
to Haar measure m) iff a is not a root of unity.

PROOF. Suppose a is a root of unity, then a” = 1 for some p # 0. Let f(z) = z*.
Then fo T = f and f is not constant a.e. Therefore T is not ergodic by
Theorem 1.6(ii). Conversely, suppose a is not a root of unity and f o T = f,
feL?m). Let f(z) = Y2 _ b,z" be its Fourier series. Then f(az) =

© _, b,a"z" and hence b,(a" — 1) = 0 for each n. If n # 0 then b, = 0,

and so f is constant a.e. Theorem 1.6(v) gives that T is ergodic. O
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An equivalent way to say a € K is not a root of unity is to say that {a"}*,
is dense in K. (If a is a root of unity then {a"}® is a finite set and so not
dense in K. If a is not a root of unity we can obtain an e-dense subset of K
as follows. Since the set {a"}®,, consists of infinitely many points there are
two points af, a? with d(a”,a?) < ¢ (d is the usual Euclidean distance on K).
Then d(1,a?"?) < ¢ so that {a"@ P} __ is e-dense.) This formulation is
used to generalise Theorem 1.8 to the general case.

(3) We consider a rotation T(x) = ax of a general compact group. The
measure involved is normalised Haar measure m.

Theorem 1.9. Let G be a compact group and T(x) = ax a rotation of G. Then
T is ergodic iff {a"}* is dense in G. In particular, if T is ergodic, then G is
abelian.

PrOOF. Suppose T is ergodic. Let H denote the closure of the subgroup
{a"}*, of G. If H # G then by (7) of §0.7 there exists y € G with y # 1 but
y(h) = 1 Yh e H. Then y(Tx) = y(ax) = y(a)y(x) = y(x), and this contradicts
ergodicity of T. Therefore H = G. (If G is metric we could have used
Theorem 1.7 instead of the above proof) Conversely, suppose {a"},.z is
dense in G. This implies G is abelian. Let f € L?m) and f o T = f. By (9)
of §0.7 f can be represented as a Fourier series ) ; b;y;, where y; € G. Then
Y byi(@)yi(x) = Y byi(x) so that if b; # 0 then y,(a) = 1 and, since y;(a") =
y:(a))" = 1, y; = 1. Therefore only the constant term of the Fourier series of
f can be non-zero, i.e.,, f is constant a.e. Theorem 1.6(v) gives that T is
ergodic. O

(4) Let G be a compact group and 4:G — G be a continuous endo-
morphism of G onto G. We know that 4 preserves Haar measure m. We
first consider the special case of endomorphisms A(z) = z” of the unit circle
K. We shall show A(z) = z” is ergodic if |p| > 1 Suppose f € L*m) and
foA=f. If f(z) has Fourier series f(z) =) 2 __ a,z" then f( Az
Y — o a2 Therefore a, = a,, = a2, = a5, = '+ - so that if n # 0 we have
a, = 0 because the Fourier coefficients must satisfy Y2 o laj|* < 0. Only
the constant term of the Fourier series can be non-zero so f is constant
a.e. Therefore A is ergodic.

In the case of a general compact abelian group we have the following

result due independently to Rohlin and Halmos.

Theorem 1.10. If G is a compact abelian group (equipped with normalized
Haar measure) and A:G — G is a surjective continuous endomorphism of G
then A is ergodic iff the trivial character y = 1 is the only y € G that satisfies
yo A" =y for some n > 0.

PROOF. Suppose that whenever y4" = y for some n > 1 we have y = 1. Let
f o A = f with f € L*(m). Let f(x) have the Fourier series ) a,y, where y, € G
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and ) |a,|* < oo. Then ) a,y,(AX) = Y a,y,(x), so thatify,, y, o A, 7,0 A%, ...,
are all distinct their coefficients are equal and therefore zero. So if a, # 0,
y,(A4F) = y, for some p > 0. Then y, = 1 by assumption and so f is constant
a.e. Therefore A is ergodic by Theorem 1.6(v).

Conversely let A be ergodic and yA" =y, n > 0. If n is the least such
integer, f =y + y4 + - - - + yA"~ !is invariant under 4 and not a.e. constant
(being the sum of orthogonal functions), contradicting Theorem 1.6(v). [

We are especially interested in the case of the n-torus K". Recall from §0.8
that a surjective endomorphism A: K" — K" is given by an n x n matrix [A4]
of integers and that K" can be identified with Z" and the induced action
A:K" - K" corresponds to the action of the transpose matrix [A4], on Z".

Corollary 1.10.1. Let A: K" — K" be a surjective continuous endomorphism of
the n-torus. Then A is ergodic iff the matrix [A] has no roots of unity as
eigenvalues.

PRrOOF. If 4 is not ergodic Theorem 1.10 gives the existence of g€ Z" q # 0
and k > 0 with [4]¢q = q. Then [A]* has 1 as an eigenvalue so that [4],,
and hence [ 4], has a k-th root of unity as an eigenvalue.

Conversely if [A4], has a k-th root of unity as an eigenvalue then [A]¥
has 1 as an eigenvalue. Therefore ([4]f — I)(y) = 0 € R" for some y € R",
and since the matrix [A], has integral entries we can find such a y e Z".
Hence [A]¥y = y and 4 is not ergodic by Theorem 1.10. O

When G is not abelian similar necessary and sufficient conditions for
ergodicity of an endomorphism can be stated in terms of the irreducible
unitary representations of G. (When G is abelian these representations are
the characters of G.) This has been studied by Kaplansky (Kaplansky [1]).

(5) For affine transformations of compact metric groups necessary and
sufficient conditions for ergodicity are known. The simplest case is when G
is a compact, connected, metric, abelian group.

Theorem 1.11. If T(x) = a - A(x) is an affine transformation of the compact,
connected, metric, abelian group G then the following are equivalent:

(1) T is ergodic (relative to Haar measure).
(ii) (@) whenever y o A* =1y for k > 0 theny° A =7y;and
(b) the smallest closed subgroup containing a and BG (where Bx =
x~1 - A(x)) is G(i.e., [a,BG] = G).
(iil) 3xo € G with {T"(x,):n > 0} dense in G.
(iv) m({x:{T"x:n = 0 is dense}}) = 1.

(Note that conditions (a) and (b) reduce to the conditions given in (3) and (4)
in the special cases. The equivalence of (i) and (ii) was investigated by Hahn,
Hoare and Parry.)



32 1 Measure-Preserving Transformations

ProOF. First note that B is an endomorphism of G (but maybe nonsurjective)
and commutes with A.

(i) = (). Suppose (a) and (b) of (ii) hold. If fo T =f, f e L*m), let
f= by, ve G, be the Fourier series of f. Then

Z byi(a)yi(Ax) = Z byi(x) (*)

If y;, yio A, ;0 A% ..., are all distinct then b; =0 or else ) |b;|* < o0 is
violated. Hence, if b; # 0 then y; o A" = y;forsomen > 0,and by (a)y o 4 = .
But then (*) implies y;(a) = 1 and so y,(x) = 1 Vx € [a, BG] and by (b) y; = 1.
So f is constant a.e. Therefore T is ergodic by Theorem 1.6(v).

(i) = (iv). This follows by Theorem 1.7.

(vi) = (iii) is trivial.

(iii) = (ii). It remains to show thatif 3x, € G with {T"x4:n > 0} densein G
then conditions (a) and (b) of (ii) hold. Suppose y o A* =7, k > 1, ye G. Let
y1=y° B. Then y;(T*x) = y,(a- Aa- -~ - A" a)y,(A*x) = y(a~ ' A*a)y,(x) =
y1(x). Hence y, assumes only the finite number of values y,(x,), y1(TXo), - - -
91(T*"*x,) on the dense set {T"x,:n >0} and hence assumes only these
values on G. Since G is connected y, must be constant, and so y, = 1. Hence
yA = vy and condition (a) holds.

If [a,BG] # G3y # 1, ye G, with y(a) = 1 and y(Bx) = 1 (see (7) of §0.7).
Then y(Tx) = y(x) and so y assumes only the value y(x,) on the dense set
{T"xo:n > 0} and therefore y is a constant. Hence v = 1, a contradiction,
and we have shown that (iii) implies (b). O

When G is K" the equivalence of (i) and (ii) becomes: T = a - A4 is ergodic
iff
(a) the matrix [A] has no proper roots of unity (i.e., other than 1) as

eigenvalues, and
(b) [a,BK"] = K"

This is easily proved by a method similar to the one used in (4) for the
endomorphism case.

Conditions for ergodicity of affine transformations of compact non-
abelian groups may be found in Chu [1].

(6) We now consider two-sided shift transformations.
Theorem 1.12. The two-sided (py, - . - , Px—1) Shift is ergodic.

PRrROOF. Let o/ denote the algebra of all finite unions of measurable rec-
tangles. Suppose T 'E = E, E € . Let ¢ > 0 be given, and choose 4 € o
with m(E A\ A) < ¢. Then
Im(E) — m(A)| = |m(E ~ A) + m(E\A) — m(4 n E) — m(A\E)|
< m(E\A) + m(A\E) < ¢.
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Choose n, so large that B = T~ "A depends upon different coordinates
from A. Then m(B n A) = m(B)m(A) = m(A)* because m is a product measure.
We have

mEAB) =m(TT"EAT "A)=m(EN A) <eg,

and since EA(AnB)c (EA A)v (E A B) we have m(E A (AN B)) < 2e.
Hence
1m(E) —m(AnB)| <2

and
[m(E) — m(E)?| < |m(E) — m(A n B)| + |m(4 n B) — m(E)?|
< 2¢ + |m(4)* — m(E)?|
< 2¢ + m(A)|m(A) — m(E)| + m(E)|m(4) — m(E)|
< 4e.
Since ¢ is arbitrary m(E) = m(E)?* which implies that m(E) = 0 or 1. O

(7) By a similar argument, we see that the 1-sided (py, ..., px—1)-shift
is ergodic.
(8) We have the following theorem for the (p, P) Markov shift.

Theorem 1.13. If T is the (p, P) Markov shift (either one-sided or two-sided)
then T is ergodic iff the matrix P is irreducible (i.e. Vi, j 3n > 0 with p{p > 0
where p{") is the (i, j)-th entry of the matrix P").

We shall give the proof of this theorem in §1.7 (Theorem 1.19) after we
have used the ergodic theorem to derive another way of expressing ergo-
dicity. We shall then only have to check a condition on measurable rectangles.

As we mentioned earlier ergodic transformations are the “irreducible”
measure-preserving transformations and we would like every measure-
preserving transformation to be built out of ergodic ones. To get some
idea how this ergodic decomposition of a given transformation may be
formulated consider a map T of a cylinder X =[0,1] x K given by
T(x,z) = (x,az) where ae K is not a root of unity. In other words T is the
direct product of the identity map, 1, of [0, 1] and the rotation Sz = az of K.
So T maps each circular vertical section of the cylinder to itself and acts
on each section by S. We can think of [0,1] x K as partitioned into the
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sets {x} x K and we can consider the direct product measure m; X m,,
where m, is Lebesgue measure on [0,1] and m, is Haar measure on K,
as being decomposed into copies of m, on each element {x} x K of the
partition. In other words we have a partition { of X on each element of
which m,; x m, induces a probability measure and T induces a transforma-
tion which is ergodic relative to the induced measure. This is the ergodic
decomposition of T. It turns out that this procedure can always be performed
when (X,4%,m) is a nice measure space, namely a Lebesgue space. This
type of space will be discussed more in Chapter 2. It turns out that if X
is a complete separable metric space, m is a probability measure on the
g-algebra %(X) of Borel subsets of X and 4 is the completion of #(X) by
m then (X, %, m) is a Lebesgue space. Suppose T is a measure-preserving
transformation of a Lebesgue space (X, %, m). Let #(T) be the o-algebra
consisting of all measurable sets B with T~!B = B. The theory of Lebesgue
spaces determines a partition { of (X, %, m) such that if #({) denotes the
smallest o-algebra containing all members of { then %({) = #(T) in the
sense that each element of one g-algebra differs only by a null set from
an element of the other. Moreover TC = C for each element C of (. Also,
the measure m can be decomposed into probability measures m, on the
elements C of {. The transformation T|C turns out to be ergodic relative to
the measure m.. This decomposition is essentially unique. A full account
can be found in Rohlin’s article [2].

When T:K — K is a rotation, Tz = az, where a is a root of unity (say
a’ =1 and p > 0 is the smallest such) then the partition { is the partition
into cosets of the subgroup H = {1,a,a% ...,a? '} of K. If C=zH is a
typical element of { the induced measure on C gives equal weight to each
point za' in C and T|C maps za' to za'*'.

§1.6 The Ergodic Theorem

The first major result in ergodic theory was proved in 1931 by G. D. Birkhoff.
We shall state it for a measure-preserving transformation of a o-finite mea-
sure space. A o-finite measure on a measurable space (X, %) is a map
m:%B — R* U {00} such that m(¥) = 0, m(| );>, B,) = ) >y m(B,) whenever
{B,} is a sequence of members of # which are pairwise disjoint subsets
of X, and there is a countable collection {4,}7 of elements of # with
m(A,) < oo forallnand ( )32, 4, = X. The Lebesgue measure on (R", Z(R"))
provides an example of a o-finite measure. Of course any probability mea-
sure is o-finite.

Theorem 1.14 (Birkhoff Ergodic Theorem). Suppose T:(X, B, m) — (X, %, m)
is measure-preserving (where we allow (X, %, m) to be o-finite) and f e L'(m).
Then (1/n) Y124 f(T(x)) converges a.e. to a function f* € L*(m). Also f* o T =
f*ae. and if m(X) < co, then [ f* dm = [ fdm.
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Remark. If T is ergodic then f* is constant a.e. and so if m(x) < co f* =
(1/m(X)) [fdm ae. If (X,%,m) is a probability space and T is ergodic we
have Vf € L'(m) lim, ., (1/n) Y723 f(T'x) = [ fdm ae.

We shall give the proof at the end of this section after we have discussed
some motivation for the ergodic theorem and some applications of it.

(i) Let (X, %, m) be a probability space and let T:X — X be measure-
preserving. Let E€ #. For xe X we could ask with what frequency do the
elements of the set {x, T(x), T*(x), ...} lie in the set E?

Clearly T'(x) € Eiff y;T*(x) = 1, so the number of elements of {x, T(x), . . .,
T '(x)} in E is Yr—p xeT“(x). The relative number of elements of
{x, T(x),. T"‘l(x)} in E equals (1/n) Y725 xzT*(x) and if T is ergodic
then (1/n) Z L xeT'(x) » m(E) a.e. by the ergodic theorem. Thus the orbit
of almost every point of X enters the set E with asymptotic relative frequency
m(E).

(i) Let T be a measure-preserving transformation of the probability
space (X, %, m) and let fe L'(m). We define the time mean of f at x to be

n—1

1
lim = Y f(T%x)) if the limit exists.

"—’OOnl 0

The phase or space mean of f is defined to be

fx f(x)dm.

The ergodic theorem implies these means are equal a.e. for all f € L!(m) iff
T is ergodic. Since these two means are equated in some arguments in
statistical mechanics it is important to verify ergodicity for certain trans-
formations arising in physics. This application to time means and space
means is more realistic in the case of a 1-parameter flow { T}, .z of measure-
preserving transformations. The ergodic theorem then asserts limy_, , (1/7T)
[6 /(T x)dt exists a.e. for feL'(m) and equals [y fdm if the flow {T,} is
ergodic and (X, 4, m) is a probability space.

(iil) We now illustrate how the ergodic theorem gives rise to results in
number theory.

Theorem 1.15 (Borel’s Theorem on Normal Numbers). A/most all numbers
in [0, 1) are normal to base 2, i.e., for a.e. xe[0,1) the frequency of 1’s in the
binary expansion of x is .

ProoF. Let T:[0,1) — [0, 1) be defined by T(x) = 2x mod 1. We know that
T preserves Lebesgue measure m and is ergodic, by Example 4 at the end
of §1.5. Let Y denote the set of points of [0,1) that have a unique binary
expansion. Then Y has a countable complement so m(Y) = 1.

Suppose x = a,/2 + a,/2* + - -- has a unique binary expansion. Then

a® a, as
T(x) = 42 =29
(x) T(2+22+23+ ) ki
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Let f(x) = X[I/Z,l)(x). Then
i Ai+1 | Gi+2 1 iffa;y, =1
T: — e ) =
ST f( 2 T T ) {o g, =0.
Hence if xe Y the number of 1’s in the first n digits of the dyadic expansion

of x is Y724 f(T'(x)). Dividing both sides of this equality by n and applying
the ergodic theorem we see that

ln—l

i 1
; ,.;o f(Tx)—» fxll/?..l)dm = 5 a.e.

This says the frequency of 1’s in the binary expansion of almost all points
is 4. O

The ergodic theorem can be applied to give other number theoretic
results. Some are obtained in Billingsley [1] and Avez-Arnold [1].

Before moving to the proof of Theorem 1.14 we present some corollaries
of it.

Corollary 1.14.1 (L? Ergodic Theorem of Von Neumann). Let 1 <p<o
and let T be a measure-preserving transformation of the probability space
(X, B,m). If feLf(m) there exists f* e LF(m) with f*o T = f* ae. and
[|(1/m) Y225 A(T'x) — f*(x)||, = O.

Proor. If g is bounded and measurable then ge L? and by the ergodic
theorem we have that (1/n) Y723 g(T'x) — g*(x) a.e. Clearly g* e L®(m) and
hence g*eLP(m). Also |(1/n) Y725 g(T'x) — g*(x)]” >0 a.e. and by -the
bounded convergence theorem ||(1/n) Y728 g(T'x) — g*(x)||, = 0. If £>0
we can choose N(g, g) such that if n > N(g,g) and k > O then

ln—l n+k—1

=Y 9(T'x) i i;) g9(T'x)

Ri=o

<eé&.
p

Let f € LP(m) and S,(f)(x) = (1/n) Y725 f(T'x). We must show that {S,(f)}
is a Cauchy sequence in L?(m). Note that ||S,(f)||, < ||f]|,- Let ¢ >0 and
choose ge L®(m) such that || f — g||, < /4. Then

”Snf_ Sn+kf“p < ”Snf - Sng”p + ”Sng - Sn+kg||p + ”Sn+kg - Sn+kf”p
<e¢d+e2+¢e/d=¢
if n > N(e/2,9) and k > 0. Therefore {S,(f)} is a Cauchy sequence in L?(m)

and hence ||S,f — f*||, >0 for some f*e L?(m). We have f*o T = f*
a.e. because
J(x)

(” - 1)<S"+ ) = (8,00 =22, 0

n
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The next corollary gives another form of the definition of ergodicity. It
illustrates some of the power of the ergodic theorem because by assuming
T is ergodic (i.e., VA, B € # with m(A4) > 0, m(B) > 0 there exists some n > 1
with m(T™"4 n B) > 0 (Theorem 1.5(iv)) we can actually conclude that
m(T~"A n B) converges, in a Cesaro sense, to m(A)m(B).

Corollary 1.14.2. Let (X, %, m) be a probability space and let T:X — X be a
measure-preserving transformation. Then T is ergodic iff YA, Be #

! "ZI T A N B) > m(A)m(B).

PROOF. Suppose T is ergodic. Putting f = y, in Theorem 1.14 gives
(1/n) Y726 xa(TH(x)) = m( ) a.e. Multiplying by yj gives

- Z 14T x))XB - m(A)yp ae.,

and the dominated convergence theorem implies
1! .
o Y. m(T™'4 n B) > m(A)m(B).
i=0

Conversely, suppose the convergence property holds. Let T _‘E E,
E € 2. Put A = B = E in the convergence property to get (1/n Y =5 m(E) »
m(E)?. Hence m(E) = m(E)? and m(E) = O or 1. O

We now turn to the proof of Theorem 1.14. If T is a measure-preserving
transformation of the probability space (X, &, m) then the operator Ur
is defined and UyL'(m) = L'(m), UrLk(m) < Li(m) and ||Urf]|, = ||f]|,Vf €
L'(m). We shall need the following result which we shall apply to the operator
U . Recall that an operator U: Lk(m) — Lk(m) is called positive if whenever
f = 0then also Uf > 0.

Theorem 1.16 (Maximal Ergodic Theorem). Let U : Lg(m) — Lx(m) be a posi-
tive linear operator with ||U|| < 1. Let N > 0 be an integer and let f € Ly(m).
Define fo =0, f,=f+Uf +U*+---+U"f for n>1, and Fy =
maxo<,<y fo = 0. Then ((x.py> o fdm > 0.

ProoF. (due to A. Garsia) Clearly Fy e Lik(m). For 0 <n < N we have
Fy = f, so UFy = Uf, by positivity, and hence UFy + f > f,. . Therefore
UFy(x) + f(x) = max f,(x)

1<n<N

= max f,(x) when Fy(x) >0

0<n<N

= Fy(x).
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Thus f > Fy — UFyon A = {x:Fy(x) > 0}, so
Lfdm > L Fydm — L UFydm
= fx Fydm — L UFydm since Fy = 0 on X\A.
> fx Fydm — fx UFydm since Fy > 0 and hence UFy > 0.

> 0since ||U|| < 1. O

Corollary 1.16.1. Let T: X — X be measure-preserving. If g € Ls(m) and

lnl
B—{xeX sup — ZgT‘x))>a}

n>1 N ;

then
meA gdm = am(B, n A)

if T"'A= A and m(A) < .

Proof. We first prove this result under the assumptions m(X) < oc and
A= X. Let f=g—a,then B, = ( J¥-o {x:Fy(x) > 0} so that [p fdm>0
by Theorem 1.16 and therefore {5, gdm > am(B,). In the general case we
apply the above to T|A to get [4.5,gdm > am(A N B,). O

PrOOF OF THEOREM 1.14. We first assume m(X) < c0. By considering real
and imaginary parts it sufﬁces to consider f € Li(m). For such an S let
f*x)=limsup,_ , (1/n) Y14 x)and f(x —hmmf,ﬁ00 1/n) Y7526 f(T'x).
We have f*o T = f* and f, o T /. because if a,(x) = (1/n) Y 12§ f(T'x)
then ((n + 1)/n)a,+(x) — a(Tx) = f(x)/n. We have to show that f* = fy
a.e. and that they belong to L' (m).

For real numbers a, f let E, ; = {x € X| f,(x) < f and a < f*(x)}. Since
{x|f,(x) < f*(x)} = U{Ea,,,lﬁ <o and o, B both rational} we shall show
m(E, ;) = 0if < a because then we shall have f* = f, a.e. Clearly T™'E, ; =
E,jandifwe put B,= {x € X |sup,. , (1/n) Y24 f(T'x) > o} thenE, ;n B, =
E, s. From Corollary 1.16.1 we get

- fdm = fEu.BmBa fdm = am(E, ; N B,) = am(E, p).

Therefore (5, , fdm > am(E, ).
If we replace f, «, § by —f, — B, —a, respectively, then since (—f)* =
—fiand (—=f), = —f* we get

fs fdm < pm(E, z)

Therefore am(E, 45) < pm(E, p),s0 if B < o thenm(E a,}) 0. This gives f* = f,
a.e. as we explained above. Therefore (1/n) Y72 f(T'x) > f* a.e.
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To show f* € L'(m) we use the part of Faton’s lemma that asserts lim g, €
L'(m)if {g,} is a (pointwise) convergent sequence of non-negative integrable
functions with lim inf {g,dm < co. Let g,(x) = |(1/n) Y724 f(T'(x))|- Then
fgndm < {| f]| dm so we can apply the Faton lemma to assert lim,_, ,, g,(x) =
[lim,_, , (1/n) Y728 f(T'x)| = | f*| belongs to L'(m).

It remains to show that [fdm = [f*dm if m(X) < oo. Let D} = {x €
X:(k/n) < f*(x) < (k + 1)/n} where k€ Z, n > 1. For each small ¢ > 0 we
have D; N By -, = Dy and by Corollary 1.16.1

k k
sz fdm > <; - 8>m( ") so that sz £ dm = = m(Df).

Then
k+l 1
fan*deTm( k)szm(Dk)+ Dﬂfdm

by the above inequality. Summing over k gives [x f*dm < (m(X)/n) +
{x f dm. Since this holds for all n > 1 we have j[x f*dm < fy f dm. Applying
this to —f instead of f gives [x (—f)* dm < |x —fdm so that [y f, dm >
[x fdm.But f, = f*ae.so [x f*dm = [x f dm. This finishes the proof when
m(X) < oo.

When m(X) = oo the above proof is valid once we have shown that
m(E, g) < co when f < a. (We need to show this to apply Corollary 1.16.1.)
Suppose firstly that « > 0. Let C € % be any set with C < E, ;and m(C) < oo.
(Such a set exists because X is o-finite.) Then h = f — ay, € L'(m) so by the
maximal ergodic theorem

f{x:HN(mo) (f —ay)dm =0 forall N> 1.
(The function Hy is associated to h by Theorem 1.16.) But Cc E,; =
(J¥=o{x:Hn(x)>0} and therefore [yx|f|dm > am(C). Hence m(C) <
(1/0) [x|f] dm for each C e # with C < E, ; and m(C) < co. Since X is o-
finite we have m(E, ;) < oo. If & < 0 then f < 0 so we can apply the above
with —f and — f instead of f and « to get m(E, ;) < co. O

§1.7 Mixing

If T is a measure-preserving transformation of a probability space we have
deduced from the ergodic theorem that T is ergodic iff VA, B € 4,

n—1

lim ! Y. m(T~'A n B) = m(A)m(B).

n—w N iZo

We can make changes in the method of this convergence to give the following
notions.
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Definition 1.5. Let T be a measure-preserving transformation of a probability
space (X, &, m).

(i) T is weak-mixing if VA, Be %

lim lnf |m(T~*4 ~ B) — m(A)m(B)| = 0.

n—w N =9
(i) T is strong-mixing if VA, Be A&
lim m(T™"A n B) = m(A)m(B).

n— oo
Remarks

(1) Every strong-mixing transformation is weak-mixing and every weak-
mixing transformation is ergodic. This is because if {a,} is a sequence of real
numbers then lim, _, , a, = 0 implies

ln—l
lim_ z Iail =0

n—»o N i=o

and this second condition implies

1n= 1
lim - ) a;=0.
n—o N i=0o

(2) An example of an ergodic transformation which is not weak-mixing
is given by a rotation T(z) = az on the unit circle K. This will be proved at
the end of this section but one can see it roughly as follows. If 4 and B are
two small intervals on K then T ‘4 will be disjoint from B for at least half of
the values of i so that (1/n) Y724 |m(T~'A N B) — m(A)m(B)| = 3m(A)m(B)
for large n. From this one sees that, intuitively, a weak-mixing transformation
has to do some “stretching.”

(3) There are examples of weak-mixing T which are not strong-mixing.
Kakutani [1] has an example constructed by combinatorial methods and
Maruyama [1] constructed an example using Gaussian processes. Chacon
and Katok and Stepin ([1] p. 94) also have examples. If (X, &, m) is a prob-
ability space let 7(X) denote the collection of all invertible measure-preserving
transformations of (X, 4, m). If we topologize t(X) with the “weak” topology
(see Halmos [1]), the class of weak-mixing transformations is of second
category while the class of strong-mixing transformations is of first category.
So from the point of view of this topology most transformations are weak-
mixing but not strong-mixing.

(4) Intuitive descriptions of ergodicity and strong-mixing can be given as
follows. To say T is strong-mixing means that for any set 4 the sequence
of sets T™"A becomes, asymptotically, independent of any other set B.
Ergodicity means T~ "4 becomes independent of B on the average, for each
pair of sets A, Be #. We shall give a similar description of weak-mixing
after Theorem 1.22.
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The following theorem gives a way of checking the mixing properties for
examples by reducing the computations to a class of sets we can manipulate
with. For example, it implies we need only consider measurable rectangles
when dealing with the mixing properties of shifts.

Theorem 1.17. Let (X, B, m) be a measure space and let & be a semi-algebra
that generates B. Let T: X — X be a measure-preserving transformation. Then

(i) T is ergodic iff YA, Be &

lim 1 Z T4 A B) = m(A)m(B),

n— oo i=0

@) Tis weak-mixing iff VA, Be &

11m Z |[m(T~'4 N B) — m(A)m(B)| =

(iii) T is strong-mixing iff VA, Be &
lim m(T™"A n B) = m(A)m(B).

n— oo

PRrROOF. Since each member of the algebra, &/(&), generated by & can be
written as a finite disjoint union of members of & it follows that if any of the
three convergence properties hold for all members of % then they hold for
all members of o/(%).

Let ¢>0 be given and let A, Be 4. Choose A,, Bye &(¥) with
m(A A Ap) < eand m(B A By) < e Foranyi>0,(T""AnB) A (T 4, N
Bo) = (TTPANA T '4,) U (B A By), sowehavem((T "4 n By A (T 4y N
By,)) < 2¢, and therefore |m(T~'4 n B) — m(T~'A, N By)| < 2¢. Therefore

Im(T_iA N B) — m(A)m(B)| < Im(T_iA N B)—m(T 4, N Bo)|
+ Im(T_iAo N Bgy) — m(Ao)m(BO)|
+ |m(A0)m(Bo) - m(A)m(BO)l
+ [m(A)ym(Bo) — m(A)m(B)|
<de+ [m(T" 4y N Bo) — m(Aom(By)|.

This inequality together with the known behaviour of the righthand term
proves (ii) and (iii). To prove (i) one can easily obtain

n—1
S w4 0 B~ m(Am®B)| < 4
i=0
n—1
+ 3, m(T ™0 0 B) = mAgm(By)

and then use the known behaviour of the right-hand side. O
\
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As an application of this result we shall prove the result about ergodicity
of Markov shifts mentioned in §1.5. To do this we shall use the following

Lemma 1.18. Let P be a stochastic matrix, having a strictly positive probability
vector p with pP = p. Then Q = limy_., (1/N) Y N=3 P" exists. The matrix Q
is also stochastic and QP = PQ = Q. Any eigenvector of P for the eigenvalue
1 is also an eigenvector of Q. Also Q* = Q.

ProoF. Let m denote the (p, P) Markov measure and T be two-sided (p, P)
Markov shift. Let x; denote the characteristic function of the cylinder,[i]o =

{(xn)® x| xo = i}. By Birkhoff’s ergodic theorem (1/N) YNZ8 x(T") = xF(x)
a e., and by multiplying by xi(x) and using the dominated convergence
theorem we have (1/N) Y =g pip? = [x¥(x)x:(x) dm(x). So Q = (g;;) is given
by g;; = (1/p))[x¥(x)x:(x) dm(x). The other properties are clear. O

Theorem 1.19. Let T denote the (p, P) Markov shift (either one-sided or two-
sided). We can assume p; > 0 for each i where p = (po, . . . , px—1). Let Q be the
matrix obtained in Lemma 1.18. The following are equivalent'

(i) T is ergodic.

(i) All rows of the matrix Q are identical.
(iii) Every entry in Q is strictly positive.
(iv) P is irreducible.

(v) 1isa simple eigenvalue of P.

PRrROOF. Let m denote the (p, P) Markov measure.

(i) = (") As in the proof of Lemma 1.18 Birkhoff’s ergodic theorem gives
l/N Zo m(olilo ™ W[j1s) = pigi;. Since T is ergodic the limit is m(o[]o).

m(,[ ]] = p;p;. Therefore q;; = p; and so the rows of Q are identical.

(ii) = (iii). If the rows of Q are identical then pQ = p implies g;; = p; and
s0 g;; > 0.

(ili) = (iv). Fix i,j. Since (1/N) Y.\ pi? — g;; > 0, then p{? > 0 for some
n.

(iv) = (iii). Fix i and let S; denote the collection of all states j with g;; >
0. Since Q = QP we have q;; > q;p;; for each [. Therefore if [ € S; and p;; > 0
then g;; > 0 so j € S;. This implies that if [ € S; then ) ; s, p;; = 1. Since P is
irreducible we must have that S; is the whole state spac€ and so g;; > 0 for
all j.

(iif) = (ii). Fix j and put g; = max; g;;. We know Q* = Q. If g;; < g; for
some i then

Q= Z 4iqij < Z quq; = q; foralll,

and this contradicts the definition of q;. Hence ¢;; = g; for all i.
(ii) = (i). To show T is ergodic it suffices (by Theorem 1.17) to show that
for any two blocks A = [ig,---»iJasrB=0slJos---Jslo+s We have

k)
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limy_, ., (1/N) Y=g m(T™"A 0 B) = m(A)m(B). For n > b + s — a we have

(@+n—>b—s)

m(T "4 N B) = PjoPjojs =" " Pjsis-1Pjsio Pioiy "7 Pip iy

and since we know that (ii) implies g;; = p; this gives
N-1

1 .
lim N Y. m(T™"A 0 B) = poDjo, """ Piu_icPioPioty """ Piy_1i,
N- n=0
= m(A)m(B).

(i) = (v). We know (ii) implies g;; = p; so that the only left eigenvectors
of Q for the eigenvalue 1 are multiples of p. By Lemma 1.18 there are also
the only left eigenvectors of P for the eigenvalue 1.

(v) = (ii). Suppose 1 is a simple eigenvalue of P. Since Q = QP each row
of Q is a left eigenvector and so they are identical. O

The condition (v) gives a practical way to test ergodicity. We shall use
Theorem 1.17 at the end of this section to find necessary and sufficient con-
ditions for a Markov shift to have the mixing properties (Theorem 1.31).

We shall use the following result, about sequences of real numbers, to
obtain other formulations of weak-mixing.

Theorem 1.20. If {a,} is a bounded sequence of real numbers then the following
are equivalent:

| Lo
0 fim 15 jaf =0

(i) There exists a subset J of Z* of density zero (i.e.,
[ cardinality (J 0,1,...,n—1
<car inality (J N { n }))_*0)’

n

such that lim,, a, = 0 provided n ¢ J.

(iii) llm - Z |a)? =

n—oo N =

PROOF. If M < Z* let ay,(n) denote the cardinality of {0, 1,...,n— 1} n M.
(i) = (ii). LetJ, = {ne Z*:|a,| = 1/k} (k > 0). ThenJ, = J, = - - - . Each
J has density zero since
1" 1 1
VY oz o

Therefore there exist integers 0 = [, <[, <[, < - - - such that for n > [,

1 1

;a,k+l(n)<—k+ 1
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Set J = Jizo[Jk+1 O [l lk+1)]- We now show that J has density zero.
Since J, =« J, <=, if [, <n <, wehave
Jn[on)=[Jn[0,)]uJn[hn]cJin[0,)]u[Js: n[0,n)]
and therefore

1 1 1

;a, (n) <- [oc,k (L) + oy, (M] < - [a,k n) + oy, , (M) <- X +— CET

Hence (1/n)a,;(n) — 0 as n — oo, and so J has density zero. If n > [, and n ¢ J
then n ¢ J, . ; and therefore |a,| < 1/(k + 1). Hence

lim |a,|=0.
Jpn—>

(ii) = (i). Suppose|a,| < K Vn.Lete > 0. There exists N, such thatn > N,
n ¢ J imply |a,| < ¢, and such that N > N, implies (a,(n)/n) < &. Thenn > N,
implies
1

o5 s Sl
ieJn{O0,1,..., n—1} i¢Jn{0,1,..., n—1}

K
<;oc,(n)+e < (K + 1)e.

1 n—1
n i;) |ai| =

(i) = (iii). By the above it suffices to note that lim, - |a, =0 iff
lim]an—’oo |an|2 =

Theorem 1.21. If T is a measure-preserving transformation of a probability
space (X, %, m) the following are equivalent:
(i) T is weak-mixing.
(i) For every pair of elements A, B of 9 there is a subset J(A,B) of Z*
of density zero such that
lim  m(T™"4 n B) = m(A)m(B).
J(A,B)#n— o

(iii) For every pair of elements A, B of % we have

hm - Z [m(T~'A ~ B) — m(A)m(B)|* =

PRrROOF. Apply Theorem 1.20 with a, = m(T "4 n B) — m(A)m(B). O

We now show that for most useful measure spaces, we can strengthen
statement (ii) to obtain a set of density zero that works for all pairs of sets
A and B.

Definition 1.6. The probability space (X, %, m) has a countable basis if there
is a sequence {B,}>, of members of & such that for each ¢ > 0 and each
B € % there exists some B, with m(B A B,) < e.
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This condition is equivalent to the condition that L*(m) has a countable
dense subset (see §0.5).

If X is a metric space with a countable topological base and % is the
o-algebra of Borel subsets of X then (X, 4, m) has a countable basis for any
probability measure m on (X, %). This follows from Theorem 6.1. This is also
true if 4 is the completion, under m, of the o-algebra of Borel subsets of X.

Theorem 1.22. Let (X, 8, m) be a probability space with a countable basis and
let T: X — X be a measure-preserving transformation. Then T is weak-mixing
if there is a subset J of Z* of density zero such that for all A, Be #
lim;,,-, m(T™"4 N B) = m(A)m(B).

Proor. It suffices to prove that the stated condition holds if T is weak-mixing.
Let {B,}® be a countable basis for (X, %, m). Put

i Im(T~"B, nl;)ﬂ— ,)l

j=1

i,

&

Since T is weak-mixing we have (1/n) Y} a, = 0 so by Theorem 1.20 there
is a subset J of Z* of density zero such that lim,,,., ,a, = 0. Therefore
limy, ., m(T™"B; N B;) = m(B;)m(B;) for all i, j, and the result follows by a
simple approximation argument. O

Remark. We can use Theorem 1.21 to give an intuitive description of weak-
mixing. It means that for each set 4 € # the sequence T "4 becomes inde-
pendent of any other set B € # provided we neglect a few instants of time.

The next result expresses the mixing concepts in functional form. This will
be useful for checking whether examples have the mixing properties. Recall
that U is defined on functions by Uz f = f o T.

Theorem 1.23. Suppose (X,%,m) is a probability space and T:X - X is
measure-preserving.

(i) The following are equivalent:
(1) T is ergodic.
(2) Forall f, g e L*m) lim,_,  ( l/n)z “ (U = (f,1)(1,9).
(3) For all f € L*m) lim, ., (1/n) Y725 f f) (f, D, f).
(i) The following are equivalent:
(1) T is weak-mixing.

(2) Forall f,g € L¥m) lim, ., (1/n) Y324 | (U f,9) — (£, 1)(1,9)| = O.
(3) Forall f € L*(m) lim,_ ., (1/n) 7= | (UL £, /) — (f, (L, f)| = 0.
(4) For all f € L*m) lim,_, , (1/n) D724 (UTf, f) — (f, 1)( 1,f)|2 =0.

(iii) The following are equivalent:
(1) T is strong-mixing.
(2) Forall f,g € L*(m), lim,_, ., f, 1

f.9) = (f, D(1,9).
(3) For all f € L*(m), lim,_, , (ULf, f) = (f, (L, /).
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PROOF. (i), (ii) and (iii) are proved using similar methods. We shall prove (iii)
to illustrate the ideas. Slight modification of this proof will prove (i) and (ii).

(2) = (1). This follows by putting f =4, g = xs, for A, Be 4.

(1) = (3). We easily get that for any A, Be %, (Utx x8) = (x4, (1, x5).
Fixing B, we get that (U%h, xg) — (h, 1)(1, x) for any simple function h. Then,
fixing h, we get that (U, h) — (h, 1)(1, ). So (3) is true for all simple functions.

Suppose f e L*(m), and let ¢ > 0. Choose a simple function h with
lf —hl||, < &, and choose N(e) so that n > N(e) implies

[(UTh,h) — (b, 1)(1,h)| < &.
Then if n > N(g)
(ULL.0) = (L)L 0] < (UL f) = (Ush, f)| + [(UTh, f)
U"Th h)| +( ’}h hy — (h, 1)(1, h)| + |(h, 1)(1, h)
< I(U'%(f —h),f)| + |(U"rh,f — h)|
+ e+ |(Lb||h = £, D]+ |(f, D] |(L,h = )|
<||f +{1f =hllzlAll2 + & + [[Al2]lS = All2
+ |If]l2llh = f]|. by the Schwartz inequality
< ellflla+ el /1l + ) + 5 + (11l + 0 + £l
Therefore lim,_, ., (U%f, f) = (f, 1)1, f).
(3) = (2). Let f € L%m) and let ', denote the smallest (closed) subspace

of L?(m) containing f and the constant functions and satisfying UpHy < ;.
The set

97,={geL2(m):lim .9 =(f,1)1 g)}
is a closed subspace of L*(m) and contains f and the constant functions.
Since it is Uy invariant it contains # ;. If g € Jff then (ULf,g) =0forn>0
and (1,g) = 0 and therefore #; = # ;. Hence & ; = L*(m). O

Remark. Another form of weak-mixing is in terms of sets of density zero. Let
us suppose that (X, %, m) has a countable basis. Then T is weak-mixing iff
there exists a subset J of Z* of density zero such that lim,,,., , (U%f,g) =
(f,1)(1,g) for all f, g € L*(m).

The next result connects weak-mixing of T with the ergodicity of T x T.
Theorem 1.24. If T is a measure-preserving transformation on a probability

space (X, %, m) then the following are equivalent:

(i) T is weak-mixing.
(i) T x T is ergodic.
(iily T x T is weak-mixing.
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ProoF. We first show (i) = (iii). Let 4, B, C, D € 4. There exist subsets J{, J,
of Z™ of density zero such that

lim m(T™"A n B) = m(A)m(B)
Jipn—o o0

lim m(T™"C n D) = m(C)m(D).
J2pn—>©

Then
lim (mx m{(T x T)""A x C) n (B x D)}

JiuJapn—>

= lim m(T "4 Bm(T "C A D)

JiuJapn— 0
m(A)m(B)m(C)m(D)
=(m x m)(A x C)(m x m)(B x D).

By Theorem 1.20 we know lim,,_. , (1/n) Y725 |[(m x m){(T x T)™"(A4 x C) N
(B x D)} — (m x m)(A x C)(m x m)(B x D)| = 0. Since the measurable rec-
tangles form a semi-algebra that generates 4 x % Theorem 1.17 asserts that
T x T is weak-mixing.

It is clear that (iii) implies (ii).

We now show (ii) = (i). Let 4, B e %. We shall show lim,_  (1/n) Y724
(m(T™'A N B) — (A)m(B))2 0. We have

nil m(T'A n B) = i (mx m)(Tx T) (A x X)n (B x X))
i=0 =

S| -
:I»—

—(m x m)(A x X)(m x m)(B x X) by (i)

= m(A)m(B).
Also
%H (m(T™'A N B))? %i (m x m)((T x T)"(A4 x A) n (B x B))
i=0 =
- ( m)(A x A)(m x m)(B x B) Dby (ii)
= m(A)*m(B)>.
Thus

% 2 {m(T™'4 0 B) — m(A)m(B)}*

1 . .
= {m(T™'A n B)*> = 2m(T~'A ~ B)m(A)m(B) + m(A)*m(B)*}
— 2m(A)*m(B)?* — 2m(A)*>m(B)* = 0.

Therefore T is weak-mixing by Theorem 1.21. O
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Remark. It is easy to show that T is strong-mixing iff T x T is strong-mixing.

We now relate the weak-mixing of T to a spectral property of the operator
Uy on L¥(m).

Definition 1.7. Let T be a measure-preserving transformation of the probabil-
ity space (X, %, m). We say a complex number A is an eigenvalue of T if it
is an eigenvalue of the isometry Uy: L%(m) — L*(m)i.e. if there exists f € L2(m)
S #0 with Urf = Af (or f(Tx) = Af(x) a.e.). Such an f is called an eigen-
function corresponding to A.

Remarks
(i) If A is an eigenvalue of T then |4| = 1 since
IAP = US| = Urf, Urf) = Af, 4F) = |AP||f]>.

(ii) A measure-preserving transformation always has A =1 as an eigen-
value and any non-zero constant function is a corresponding eigenfunction.

Definition 1.8. We say that a measure-preserving transformation T of a prob-
ability space (X, %, m) has continuous spectrum if 1 is the only eigenvalue
of T and the only eigenfunctions are the constants.

Observe that T has continuous spectrum iff A = 1 is the only eigenvalue

and T is ergodic.
We shall need the following result from spectral theory to prove the next
Theorem. The proof can be found in Halmos [2].

Theorem 1.25 (Spectral Theorem for Unitary Operators). Suppose U is a
unitary operator on a complex Hilbert space #. Then for each f € # there
exists a unique finite Borel measure y; on K such that

U"f.f) = [ rduy3) ¥nez.

If T is an invertible measure-preserving transformation then U r is unitary,
and if T has continuous spectrum and (f, 1) = 0 then p, has no atoms (i.e. each
point of K has zero ps-measure).

Theorem 1.26. If T is an invertible measure-preserving transformation of a
probability space (X, B, m) then T is weak-mixing iff T has continuous spectrum.

PROOF. Suppose T is weak-mixing and let U, f = Af, f € L%(m). If A # 1 then
integration gives (f, 1) = 0 and by the weak-mixing property we have

1
=Y (U, )]0
i=0
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and hence
ln 1
= Z |(A'f, f)| = 0.

Since |A| =1 this gives (f, f) =0 and therefore f =0 ae. If A=1 then
f = constant a.e. by the ergodicity of T. (This part of the proof did not use
the spectral theorem.)

Now suppose T has continuous spectrum. We show that if f € L(m) then

R .
y L U = (00,0 ~ 0,

If f is constant a.e. this is true. Hence all we need to show is that (f,1)=0
implies

S|

n—1
T [Usf D 0,

By the spectral theorem it suffices to show that if u, is a continuous
(non-atomic) measure on K then

ln—l
on

IS ([rann - [aa)
(fz'dufx)f aus(a )

ff AT)'d (g X ps)(A,7)  (by Fubini’s Theorem)

0 KxK

2
- 0.

{2 dy 2y
We have

- Z dpy(2)

=0

—-

1
T on;
1
n;

1 n—1 )
-l (z Z (*f)') d(s x 1) (7).
KxK i=0

If (A, 7) is not in the diagonal of K x K then

1t 11— )

- i=-|——2 150

n ,';0 (At) nl:l —(j.f)]_>
as n— co. Since pu, has no atoms the diagonal has measure 0 for u, x u,
and therefore (1/n) ) 72§ (AT)' - 0 a.e. (u; x py). The modulus of the inte-

grand is bounded by 1, so we can apply the bounded convergence theorem
to obtain the result. O

We now investigate the mixing properties of the examples mentioned
in§l.1.
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Examples

(1) Clearly the identity transformation I of (X,%,m) is ergodic iff all
the elements of % have measure 0 or 1 iff I is strong-mixing.

(2) A rotation T(z) = az of the unit circle K is never weak-mixing. This
follows because because if f(z) = z then f(Tz) = f(az) = af(z) and we can
apply the easy part of Theorem 1.26.

(3) Theorem 1.27. No rotation Tx = ax on a compact group is weak-mixing.

PrOOF. We know that if T is ergodic then the group G is abelian, and if y
is any character of G we have y(Tx) = y(a)y(x), which shows that T is not
weak-mixing by the easy part of Theorem 1.26. O

(4) Theorem 1.28. For an endomorphism of a compact group strong-mixing,
weak-mixing and ergodicity are all equivalent. (The condition for ergodicity
was given in Theorem 1.10.)

PrROOF. We shall give the proof when G is abelian. It suffices to show that
if the endomorphism 4:G — G is ergodic then A is strong-mixing. If y, 6 G
then (U%y, d) = 0 eventually unless y = é = 1. So always (U%y, §) — (y, 1)(1, d).
Fix 6 € G. The collection

Hy={f € L*(m):(U%S,8) - (f,1)(1,6)}

is a subspace of L*(m) which is closed. (To check #; is closed, suppose
fue # and f,— feL*m). For §=1 it is clear that ;= L*m), s
suppose (1,0) = 0. Then

[(U%Sf,8)| < [(U%S,0) — (U fi, )| + |(Uls i, 0)]
< ||f f,JIz ||5|l2 + | "fk,é)l (by the Schwarz inequality)

If ¢ > 0 is given choose k so that ||f fill2 < €/2 and then choose N(e) so

that n > N(e) 1mphes |(U" fi, 8)| < ¢/2.) Since J#; contains G it is equal to
L?*(m). Fix fe L*m) and consider %, = {g e L*( ) U f,9) - (f, D(1,9)}.
Then &, is a closed subspace of L2(m), contains G by the above, and so
equals L*(m). Hence A is strong-mixing. O

(5) Theorem 1.29. For an affine transformation T=a- A on a compact
metric abelian group the following are equivalent:

(i) T is strong-mixing.
(i1) T is weak-mixing.
(iii) A is ergodic.
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Proor. We shall give the proof in the case when G is connected. Let
Bx = x~ ! A(x) and recall that T is ergodic iff

(@) yo A* =79,k >0, implies y o 4 = y, and
(b) [4,BG] = G.

If A is ergodic then BG = G since the endomorphism B of G is one-to-one.
Choose be G so that B(b) = a. Define ¢:G — G by ¢(x) = bx. Then ¢ T = A¢p
and ¢ preserves Haar measure m. By (4) above A4 is strong-mixing and so
if C, De# we have m(T""CnB)=m(¢p(T""CnD)=m(@T "Cn¢D) =

A7 "$C n pD) - m(dpC)m(¢pD) = m(C)m(D). Therefore T is strong-mixing.

Conversely if T is weak-mixing and A4 is not ergodic then by (a) yo A =y
for some y # 1. But then

[(UF7,9)| =|(v(@)y(4a) - - - y(A" ta)y,y)| = |y|l3 = 1

for all n contradicting the weak-mixing of T. So if T is weak-mixing then
A is ergodic. O

(6) Theorem 1.30. The two-sided (p, .. .,p.—1)-shift is strong-mixing.

ProOOF. Use Theorem 1.17 after verifying the correct behaviour for mea-
surable rectangles. : O

(7) Similarly, the one-sided (pq, - . . , px_ 1)-shift is strong-mixing.
(8) We have the following theorem for the (p, P) Markov shift. Recall
that we can always assume each p; > 0.

Theorem 1.31. If T is the (p, P) Markov shift (either one-sided or two-sided)
the following are equivalent:

(i) T is weak-mixing.

(i) T is strong-mixing.

(i) The matrix P is irreducible and aperiodic (i.e. AN > 0 such that the
matrix P has no zero entries).

(iv) For all states i, j p{? — p;.

Proof. That (iii) and (iv) are equivalent is a standard use of the renewal
theorem in probability theory

(i) = (iii). Since I/N)Z ' Im(o[iJo 0 T5"[7]o) — m(o[iJo)m(a[i1o)| = O
we have (1/N) Y =5 |piP — p]| — 0. By Theorem 1. 20 we get a set J of density
zero in Z™* such that

lim p{y) =p; foralli,j.
Jpn— o

Therefore P is irreducible and aperiodic.
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(iv) = (ii). By Theorem 1.17 it suffices to show that for two blocks 4 =
alio " idasr B=13[Jo " "Jslo+s we have m(T™ "4 n B) > m(A)m(B). This is
a straightforward calculation (see proof of Theorem 1.19 for a similar one).

O

Remark. We know that T is ergodic iff Ve L'(m)(1/n) Y128 Ui f — [fdm
a.e. There is the following connection between strong-mixing and conver-
gence of ergodic averages. The measure-preserving transformation T is
strong-mixing iff for every increasing sequence k; < k, < - - - of natural num-
bers and every feL?*(m) we have ||(1/n) Y125 U%f — [fdm|, > 0 (Blum
and Hanson [2]).



CHAPTER 2
[somorphism, Conjugacy, and
Spectral Isomorphism

So far we have been studying measure-preserving transformations on prob-
ability spaces. We now want to consider the notion of isomorphism for
measure-preserving transformations; in other words, when should we con-
sider two measure-preserving transformations as being “the same” or being
equivalent? We must bear in mind that in measure theory a set of measure
zero can be ignored. We first consider ways of ignoring sets of measure zero
before considering isomorphism of measure-preserving transformations.

§2.1 Point Maps and Set Maps

One of the most important notions in measure theory is that of neglecting
sets of measure zero. With this in mind let us consider what we should mean
by saying two probability spaces (X, #,,m,), (X,,%,,m,) are isomorphic.
One way to view this is to require that the spaces be connected by an in-
vertible measure-preserving transformation after removing sets of measure
zero from each space.

Definition 2.1. The probability spaces (X, %,,m,), (X, %B,,m,) are said to
be isomorphic if there exist M, € B,, M, € #, withm;(M,) = 1 = m,(M,)and
an invertible measure-preserving transformation ¢:M; — M,. (The space
M; is assumed to be equipped with the o-algebra M; N ;= {M; N B|B € %}
and the restriction of the measure m; to this g-algebra.)

There is the following theorem on isomorphism of measure spaces.

Theorem 2.1. Let X be a complete separable metric space, let B(X) be its
a-algebra of Borel subsets and let m be a probability measure on %(X) with

53
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m({x}) =0 for each set {x} consisting of a single point x € X. Let ([0,1],
A([0,1]),1) denote the closed unit interval with its a-algebra of Borel sets
and Lebesgue measure 1. Then (X, B(X), m) and ([0, 1], B([0, 1]), 1) are
isomorphic. If (X,%,,(X),m) denotes the completion of (X,%B(X),m) then
(X, B,(X), m) is isomorphic to ([0, 1], &, 1) where & is the g-algebra of
Lebesgue measurable sets (which is the completion %,([0, 1])).

A proof is given in Theorem 9, page 327 of Royden’s book (Royden [1]).

If the condition that m have no points of positive measure is omitted
then there are at most a countable collection of points {x,}* of X with
positive measure and then (X, 4(X),m) is isomorphic to a measure space
consisting of points {y,}? with measures {m(x,)} together with ([0,s],
#([0,s]),]) where s=1— Y2, m(x,). The corresponding statement for
completed spaces is true. Therefore all the probability spaces on which our
examples act come under these results.

There is another way to handle the omission of sets of measure zero,
and this other way is, perhaps, mathematically more natural but less practical
in applications. This is the idea of using measure algebras.

Let (X, 4%, m) be a probability space. Define an equivalence relation on
2 by saying A and B are equivalent (4 ~ B) iff m(A A B) = 0. Let % denote
the collection of equivalence classes. Then 4 is a Boolean g-algebra under
the operations of complementation, union and intersection inherited from

2. The measure m induces a measure M on % by nl(B) m(B). (Here Bis
the equivalence class to which B belongs.) The pair (4, i) is called a measure
algebra.

From this point of view one says (X,, %, m;) and (X,, %#,, m,) are
“equivalent” if their corresponding measure algebras are isomorphic:

Definition 2.2. Let (X, %, m,), (X,, %,,m,) be probability spaces with
measure algebras (%,,m,), (#,,M,). The measure algebras are isomorphic
if there is a bijection ®:%, — %, which preserves complements, countable
unions and intersections and satisfies rﬁl(dif?) = ﬁlz(ﬁ) VBe A ,. The prob-
ability spaces are said to be conjugate if their measure algebras are isomorphic.

Conjugacy of measure spaces is weaker than isomorphism because if
(X1,%1,my) and (X, #,,m,) are isomorphic as in Definition 2.1 then they
are conjugate via @: %2 - %1 defined by &( ) (¢~ (M, n B))". It is easy
to give examples of conjugate measure spaces which are not isomorphic.
Let (X,,%,,m,) be a space of one point and let (X ,,%,,m,) be a space with
two points and %, = {¢, X,}. The two spaces are conjugate but they are
not isomorphic because a set of zero measure cannot be omitted from X,
so that the remaining set is mapped bijectively with X ;. The main reason
this example works is that %, does not separate the points of X,. When
some conditions are placed on the probability spaces the notions of con_]ugacy
and isomorphism coincide:
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Theorem 2.2. Let X, X, be complete separable metric spaces, let $(X ),
B(X,) be their o-algebras of Borel subsets and let m,, m, be probability
measures on B(X,), B(X,). Let ®:FB(X,)— HB(X,) be an isomorphism of
measure algebras. Then there exist M, € B(X ), M, € B(X ,) withm(M,) =
1 = m,(M,) and an mvertzble measure-preserving transformation M, - M,
such that & B) (¢ 'Bn M 2)) VB € AB(X,). If Y is any other isomorphism
from (X |, B(X ),m,) to (X 5, B(X ,), m,) which induces ® then

m({x e X1 |¢(x) # ¥ (x)}) =0

The proof is given in Theorem 12, page 329 of Royden [1].

The corresponding statement for measure-algebra homomorphisms
holds (they are induced by (not necessarily invertible) measure-preserving
transformations).

Therefore set maps are always induced by point maps for the probability
spaces used in our examples.

Often in the ergodic theory literature all probability spaces used are
assumed to be Lebesgue spaces:

Definition 2.3. A probability space (X, %, m) is a Lebesgue space if it is
isomorphic to a probability space which is the disjoint union of a countable
(or finite) number of points {y;, y,, ...} each of positive measure and the
space ([0,s], Z([0,s],1) where #([0,s]) is the o-algebra of Lebesgue mea-
surable subsets of [0,s] and [ is Lebesgue measure. Here s=1— ) 2, p,
where p, is the measure of the point y,.

The theory of Lebesgue spaces is given in Rohlin [1]. In particular the
analogue of Theorem 2.2 is true for Lebesgue spaces (i.e. set maps are always
induced by point maps) and so the two ways of dealing with sets of measure
zero coincide. Notice that the remarks following Theorem 2.1 show that
if X is a complete separable metric space and 4,,(X) denotes the completion
of (X) under a probability measure m then (X, 4,,(X), m) is a Lebesgue space.

A third way to study a probability space (X, %, m) is to study the Hilbert
space L*(m). If (X,,%,,m,), (X,,%,,m,) are both spaces with countable
basis then L%(m,), L*(m,) are separable (see §0.5) and hence unitarily iso-
morphic (i.e. there is a bijective linear map W:L?(m,) — L*(m,) such that

(Wf,Wg) = (f,9) Vf, g € L%(m,)). However, L*(m) has some extra structure
because one can multiply certain members of L*(m) to obtain a function in
L?(m). It turns out that conjugacy of measure spaces is equivalent to their
L? spaces being equivalent in a sense involving this multiplication.

Let (X, %, m) be a probability space. Since L?(m) consists of equivalence
classes of functions (f and g are equivalent if / = g a.e.) we see that if B e 4
then y is a well-defined member of L?(m). There is the following simple result.

Theorem 2.3. Let (X, #1,my), (X2,%,,m,) be probability spaces and let
@:(B,, ) > (B, ;) be a measure algebra isomorphism. Then @ induces a
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bijective linear map V:L*(m,) — L%(m,) with the properties

@) (Vf,Vg) = (f.9) VS, g € L*(m,)
(b) V and V~! map bounded functions to bounded functions
() V(fg9) = (Vf)(Vg) whenever f, g are bounded.

The map V is defined on characteristic functions by Vyz = xos)

PrOOF. For a characteristic function yz, B e 4, define Vs = XoB)- Notice
IVxsll2 = |lxall.- Extend V to simple functions to preserve linearity i.e.
VOO aXp) = Yr_, a;V X5, whenever {B,, ..., B,} are mutually disjoint
members of %,. This definition is 1ndependent of the representation of a
simple function as a linear combination of characteristic functions. We have
IVfll2 = || || for all simple functions f. Now let f be any element of L*(m,).
Choose simple functions f, with ||f, — f]l.— 0. Since {f,} is a Cauchy
sequence and V is an isometry on simple functions we know {Vf,} is a
Cauchy sequence. Denote the limit of this sequence by Vf. If {g,} is another
sequence of simple functions with ||g, — f||, — 0 then ||g, — f,||> = 0 so that
IVf, = Vg,||2 — 0. This shows that Vf is well defined. The inverse of V is
constructed in a similar way from @~ !. The linearity of V is clear from the
definition. Property (a) holds because it is equivalent to V' preserving norm.
A function f € L?(m,) is bounded iff it is the limit of a sequence of simple
functions which are uniformly bounded. By the definition of V' on simple
functions we see that Vf has the same bounds as f. Property (c) is easily
seen to hold for simple functions and hence for bounded functions. O

If @ is not necessarily surjective then V is still defined but may be
non-surjective.
It turns out that the converse of Theorem 2.3 is true.

Theorem 2.4, Let (X,,%,,m,), (X,,%,,m,) be probability spaces. Suppose
V:L*m,) — L*m,) is a bijective linear map with the properties (a ), (b), (c)
listed in Theorem 2.3. Then V is induced by an isomorphism ®: (ﬁz,mz)—»
(QB’I,m1 ) of measure algebras in the sense that Vg = Yo VBe %,.

PROOF. Let B, € 4,. We have 3, = x3, so that

V(xg,) = Vxs,)V(xs,) = Vts,),

and we see that V(y,) takes 1 and O as its only values. Thus there exists
B, e %1 such that V(xz,) = x5, We define &: (B ,,m,) — (#B,,m;) by
by ‘D(Bz) Bl

We now show that @ is an isomorphism of measure algebras. By doing
the above procedure for V! we obtain an inverse for @ so @ is invertible. Also

ﬁlz(ﬁz) = (XBZ,XBZ)
= (VXBZ’ VXﬁz) = (X(D(Bz)’ X(D(Bz)) = iy (PB,).
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It remains to show that @ preserves complements and countable unions.
First note that since V is norm-preserving and maps characteristic functions
to characteristic functions we have V(1) = 1. Since y3, + “AXo\B, = lin Lz(mz)
applying V to both sides gives o35, + Xo®,\5,) = 1 50 X,\®B, = &(X,\B,).
Therefore @ preserves complements.

Suppose B, C € #,. Then

XBLE=XB+ X& — XBnC = XB t+ X& — XBXé-
Applying V to both sides gives
Ao@BuC) = Xo®B) T Xo©¢) — Lo®B) o) = XoB)udE):

Thus ®(B u C) = ®(B) U ¢(C) and hence (by induction) ® preserves all
finite unions.
Now let B, € #,, n > 1. We have

i
R
Cs
=
o)
[¢]

and also in L*(m,) by the bounded convergence theorem. Since V is an
isometry it is continuous, so

Vals = Vx§s= Xas((') 5‘) in L*(m,).

On the other hand,

converges to

XQ @B,
in L%(m,). Therefore &(| )2, B) = |, ¢B;. O

We have shown that (X ;, %,,m,) and (X ,, #,,m,) are conjugate iff L*(m,)
and L?(m,) are connected by a bijective linear map satisfying the properties
a, b, ¢ of Theorem 2.3.

§2.2 Isomorphism of Measure-Preserving
Transformations

What should we mean by saying that two measure-preserving transforma-
tions are the “same”? We must bear in mind that sets of measure 0 do not
matter from the point of view of measure theory. Let us consider two
examples.

(1) Let T be the transformation Tz = z? on the unit circle K with Borel
sets and Haar measure, and let S be given by Sx = 2x mod 1 on [0, 1) with
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Borel sets and Lebesgue measure. Consider the map ¢:[0,1) - K defined
by x — e¢?™* The map ¢ is a bijection and preserves measure (check on
intervals and use Theorem 1.1). Also ¢S = T¢. We want to regard T and
S as the “same”, because an isomorphism ¢ of the measure spaces [0, 1)
and K maps S to ¢S¢ ! which is T.

(2) Again let S be the transformation Sx = 2x mod 1 on [0, 1) with Borel
sets and Lebesgue measure, and let T,:X — X be the 1-sided (3,3)-shift.
Define y: X — [0,1) by

lp(al’a2’a37"')=—+_+

2 23+....

The map y is one-to-one on the complement of the set of all points (a;,a,, - . .)
whose coordinates are constant eventually. However y is onto and y T, =
Sy. Also y preserves measure; we can check this on dyadic intervals and
apply Theorem 1.1.

Suppose D, is the set of points of the space X of the 1-sided (3, 1)-shift
which have constant coordinates eventually. Then T,'D, =D, and so
T;'(X\D,) = X\D,. Let D consist of the dyadic rationals in [0, 1). Then
S™!'D = D, so that S™*([0,1)\D) = [0, 1)\D. We see that D, and D both have
zero measure and y maps X\D, bijectively to [0, 1)\D. Also yT,(x) = Sy(x)
Vx € X\D,. We would like to consider S and T, as isomorphic smce after
removing sets of measure zero, we can change one to the other by an invertible
measure-preserving transformation.

We arrive at the following definition of isomorphism.

Definition 2.4. Suppose (X, #,,m,) and (X ,, %,, m,) are probability spaces
together with measure-preserving transformations

T:X,—-> X, Ty:X,-X,.
We say that T, is isomorphic to T, if there exist M, € #,, M, € #, with
my(M,) =1, my(M,) = 1 such that

(i T\M, s M, T,M, = M,, and
(ii) there is an invertible measure-preserving transformation

¢: M, > M,with ¢T(x) = T,p(x) Vxe M.

We write Ty ~ T,. (In (ii) the set M; (i = 1, 2) is assumed to be equipped
with the o-algebra M; N %, = {M; N B|B € %} and the restriction of the
measure m; to this g-algebra.)

Remarks

(1) Isomorphism is an equivalence relation.

(2) f Ty ~T,then T} ~ T4 Vn> 0.

(3) If T, and T, are invertible we can take M,, M, so that T,M,; = M,
T,M, = M,: we just take (2, TAM,, ()2, T5M, as the new sets.
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(4) Isomorphism of measure spaces (Definition 2.1) means that the identity
transformations of these spaces are isomorphic.

Because of the principle of neglecting sets of measure zero we should con-
sider two measure-preserving transformations T, T, of (X, 4, m) as identical
if we can remove a set N of zero measure from X so that T, and T, agree
on X\N. (We can always suppose T; !N < N and hence T; *(X\N) = X\N,
i=1, 2, by replacing N by

VRV

This is the same as T'; being isomorphic to T, via the identity isomorphism.
We shall write T, = T, mod 0 when this occurs. Also we shall say a measure-
preserving transformation T of (X, %, m) is invertible mod O if there is a
set N of measure zero such that T(X\N) = X\N and T|xy is an invertible
measure-preserving transformation. Since the transformation S: X — X given
by S(x) = x if x e N, S(x) = T(x) if x € X\N is then an invertible measure-
preserving transformation the requirement is equivalent to saying that the
identity provides an isomorphism between T and an invertible measure-
preserving transformation.

0
U Tl—nTz—slTl—rzTZ—Sz e Tl_r"Tz_S"N')

ri,si=0

IIC;

§2.3 Conjugacy of Measure-Preserving
Transformations

Although the concept of isomorphism of measure-preserving transforma-
tions, introduced above, is useful in practice the procedure of studying what
happens on measure algebras is perhaps mathematically more natural.

Let (X, %1, my), (X,,%,,m,) be probability spaces with corresponding
measure algebras (% 1,ml) (B, m,). If$: X, - X, ismeasure- preservmg then
we have a map ¢~ ':(%,,M,) — (#,,Mm,) defined by (¢~ (B) = (- (B))
This map is well-defined since ¢ is measure-preserving. The map ¢ ! pre-
serves complements and countable unions (and hence countable intersec-
tions). Also (¢~ '(B)) = m,(B) VB € #,. Therefore ¢! can be considered
a homomorphism of measure algebras. Note that ¢~ ! is injective.

Recall that an isomorphism ®:(%,, f,) — (#,, M) of measure-algebras is
a bijection which preserves complements and countable unions and satisfies
i, (P(B)) = my(B) VB € 4,.

We shall call two measure-preserving transformations conjugate if they
induce isomorphic maps on measure-algebras:

Definition 2.5. Let T; be a measure-preserving transformation of the prob-
ability space (X;, %;, m;), i =1, 2. We say that T, is conjugate to T, if
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there is a~measure-algebra isomorphism @:(%,, M,) — (%,,M,) such that
ST, ' =T,

It is clear that conjugacy is an equivalence relation on the set of all
measure-preserving transformations.
Isomorphism and conjugacy are connected by the following simple result.

Theorem 2.5. For i =1, 2 let T; be a measure-preserving transformation of the
probability space (X;, B;,m;). If T, is isomorphic to T, then T is conjugate
to T,.

ProOF. Let ¢:M; — M, be the isomorphism as in Definition 2.4. Define
D:(B,, m,) —» (#,, M) by ®B)= (¢ (BN M,))". Then & satisfies the
requirements of Definition 2.5. d

The converse of this theorem is not true in general because we pointed out
in §2.1 that identity maps on two measure spaces can be conjugate without
being isomorphic. However the converse is true for some classes of measure
spaces.

Theorem 2.6. Let (X,,%,,m,), (X,,%,,m,) be probability spaces which are
either both Lebesgue spaces or where each X; is a complete separable metric
space and %; is its g-algebra of Borel sets. Let T;:X;— X; be a measure-
preserving transformation, i =1, 2. If T, is con]ugate to T, then T, is iso-
morphic to T,.

PROOF. Suppose cb (%z,mz) — (%B,,m,) is the isomorphism of measure-

algebras with #T; ! = T7 '®.By Theorem 2.2 (or the correspondmg theorem

for Lebesgue spaces) there exist X'| € %, X, € B, withm (X)) = 1,my(X},) =

1, and an invertible measure-preserving transformatlon ¢: X', > X', such

that (B ) (@ '(Bn X)) Then ¢~ 'T; ' = T7 '¢~! which can be written
(T,$)" ' = (¢T5) L. It follows that T,¢ = ¢T, ae. Let

A, = {x € X, I T,p(x) = ¢T1(x)}

and M, = ()2, T;"4,. Then my(M,) =1 and T{'M, > M, so T\M,
M,.Let M, = ¢ M, and then T,M, = M, and the conditions of Definition
2.4. hold. O

On these nice measure spaces we can also reformulate the notion of a
measure-preserving transformation being invertible mod 0.

Theorem 2.7. Let (X, B, m) be a Lebesgue space or a probability space where
X is a complete separable metric space and A its o-algebra of Borel subsets.
Let T:X — X be measure-preserving. Then T is invertible mod 0 iff T~ '% = A.

PROOF. We know T~ !:4 — 4 is always injective. If T is invertible mod 0
it induces the same map on the measure algebra as that induced by the
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invertible map. Therefore T~ ' = 4. (No assumption on the measure space
was needed for this part.) If T~ '% = 4 then T~ ':(%,m) — (%, M) is a bijec-
tion and so is induced by an invertible measure-preserving transformation
defined on a subset of X of measure one (Theorem 2.2). Therefore T is equal
to this invertible transformation a.e. O

We can weaken the definitions of isomorphism and conjugacy to say what
it means for one measure-preserving transformation to be a factor (or
homomorphic image) of another.

Definition 2.6. Suppose (X;, 4;, m;) is a probability space and T;: X; —» X is
measure-preserving, i = 1,2. We say T, is a factor of T, if there exist M; € %,
with m(M;) =1 and T;M; = M; (i =1, 2) and there exists a measure-pre-
serving transformation ¢: M, - M, with ¢T,(x) = T,¢(x) Yx € M;.

The difference between this and isomorphism is that the transformation
¢ may not be invertible. For example, if S, T are measure-preserving trans-
formations then S is a factor of S x T, the role of ¢ being played by the
natural projection.

The corresponding weakening in the notion of conjugacy leads to the
following.

Definition 2.7. Let T; be a measure-preserving transformation of a proba-
bility space (X;, B;, my), i = 1, 2. We say T, is a semi-conjugate image of T if
there is a measure-algebra homomorphism ®:(%,, i,) — (%,, i) such that
oT;1 =T 1.

A map P:(%,,m,)— (%#,,Mm,;) is a measure-algebra homomorphism if
&(Y\B) = X\o(B) VBe #,, ®(| )=, B,) = 2z, ®(B,), whenever each
B, € #,, and i, (®(B)) = m,(B) VB € 4,.

If T, is a factor of T, (as in Definition 2.6) then T, is a semi-conjugate
image of T, by taking ®(B) = (¢~ !(B n M,))". If the probability spaces are
such that X, is a complete separable metric space and 4, is its o-algebra of
Borel sets then every measure-algebra homomorphism ®:(%,, m,) —
(%,,m,) is induced by a measure-preserving transformation defined on a
subset of X'; of measure one (Royden, Theorem 11, p. 329). The same is true
if (X,,%,m,) and (X,,%,,m,) are both Lebesgue spaces (Rohlin [1]).
Therefore in most measure spaces we encounter the notions of factor and
semi-conjugate image coincide.

When we deal only with Lebesgue spaces there is a nice description of all
the factors of a given measure-preserving transformation. If (X, 4,m) is a
Lebesgue space and % is a sub-g-algebra of 4 then there is a partition { of
(X, %,m) into measurable sets such that if Z({) denotes the collection of all
measurable sets that are unions of members of { then #({) = % .For example,
if we take # = £ then { would be the partition of X into individual points.
We can form a new set X, by taking the points of X, to be the elements of {.
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There is a natural map n: X — X, and we can consider 4({) as a o-algebra of
subsets of X,. Also m; =m o n~' is a probability measure on (X, %(()) and
(X, B(L),m;) turns out to be a Lebesgue space. If T:X — X is measure-
preserving and T~ !# < % then T~ !{ <{ (i.e. each set T"!C, Ce(,is a
union of elements of {) and we get a measure-preserving transformation
T;: X, — X, defined by T,(D) = Cif D =« T~'C. We have nT = Tx so that
T, is a factor of T. Therefore each sub-g-algebra & of # with T™'# <« #
leads to a factor of T. It turns out that every other factor is isomorphic to
one of this type. Suppose T,:X, - X, is a factor of T;: X, — X, and both
probability spaces are Lebesgue spaces. Suppose ¢: M; — M, is a measure-
preserving transformation with ¢T; = T,¢, as in Definition 2.6. Consider
the partition { of M, into sets of the form ¢~ !(x), x e M,. Let # be the o-
algebra generated by this partition {. Since T;'¢p ! = ¢ 'T,! we have
Ty < and hence T{ % < %. Also ¢ induces an isomorphism between
(Ty);:(X 1) — (X);and T,: X, - X,.So, when dealing with Lebesgue spaces,
the factors of a given measure-preserving transformation T:(X,%,m)—
(X, B,m) are determined by the sub-c-algebras % of # with T~ '# < #.

§2.4 The Isomorphism Problem

The main internal problem in ergodic theory is deciding when two measure-
preserving transformations are isomorphic (or when they are conjugate).
The usual way to tackle such an isomorphism problem is to look for iso-
morphism invariants. These invariants are usually of two types. The first
type of invariant is a property (e.g. ergodicity, weak-mixing) that some
measure-preserving transformations have and some do not have, such that
two isomorphic measure-preserving transformations either both have the
property or both do not have the property. In order for the property to be
useful one should be able to check if naturally occurring examples have the
property or not. Ergodicity, weak-mixing and strong-mixing are examples
of such properties. The second type of invariant is the assignment of some
object (e.g. a number, a group) in some mathematical category to each
measure-preserving transformation such that the objects associated to two
isomorphic measure-preserving transformations are isomorphic in their own
category (e.g. equal if they are numbers, isomorphic groups if they are groups).
Again, in order for such an invariant to be useful it should be calculable for
interesting examples of measure-preserving transformations. Also it will be
a good invariant if there is some collection of measure-preserving transforma-
tions for which the invariant is complete i.e. any two transformations from
this class with isomorphic objects are isomorphic measure-preserving
transformations.

We shall discuss two invariants of this type. The first is the group of
eigenvalues of a measure-preserving transformation (See Chapter 3). This
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will be a subgroup of the unit circle in the complex plane, and isomorphic
measure-preserving transformations have the same group of eigenvalues. We
shall see in Chapter 3 that in the collection of all ergodic measure-preserving
transformations with discrete spectrum this invariant is complete, i.e., if two
ergodic measure-preserving transformations with discrete spectrum have the
same group of eigenvalues then the transformations are isomorphic.

The other invariant we shall consider is entropy. Entropy theory assigns
to each measure-preserving transformation T a non-negative number h(T)
(which could be + o0) and if T, is isomorphic to T, then h(T,) = h(T,). In
1969, D. S. Ornstein proved the deep result that in the collection of all
Bernoulli shifts this invariant is complete i.e. two Bernoulli shifts with the
same entropy are isomorphic. We discuss this more fully in Chapter 4.

Before moving to these questions we shall see that some properties of
measure-preserving transformations only depend on the unitary iso-
morphism class of the induced operators on L? spaces.

§2.5 Spectral Isomorphism

Let T:X — X be a measure-preserving transformation on the probability
space (X, %, m). We have defined the operator Uy:L*(m) - L*(m) by Urf =
f o T. The operator Uy is linear and (U f, Ug) = (f,9); f> g € L*(m). Since
this last property says U is norm-preserving we know that Uy is injective.
There is the following simple result.

Theorem 2.8 Let T be a measure-preserving transformation of the probability
space (X, B, m). Then Uyp:L¥m) — L¥(m) is surjective iff T~ 1:(%,m) — (8, m)
is surjective (i.e. Ur is a unitary operator iff T~ is an automorphism of the
measure-algebra).

PROOF. Let B € 8. Then Uy = x7-15. If T~ is surjective then the image of
U r contains all characteristic functions and so U is surjective. Suppose now
U is surjective and hence bijective. Let A € . If U, f = ysthen UL (f - f) =
Urf - Urf=yss0 f-f=f Therefore f =y for some C € 4. Therefore
A=T7'C and T~ is surjective. O

On decent measure spaces Theorem 2.8 asserts that the surjectivity of U
is equivalent to T being invertible mod O (see Theorem 2.7).

We now consider equivalence in the category of isometric operators in
L? spaces.

Definition 2.8. Measure-preserving transformations Ty on (X, %#,,m,), and
T, on (X,,%,,m,) are spectrally isomorphic if there is a linear operator
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W:L?(m,) — L*m,) such that

(i) W is invertible

(iii) Up,W = WU,

(The conditions (i), (ii) just say that W is an isomorphism of Hilbert spaces.)
The following shows spectral isomorphism is weaker than conjugacy.

Theorem 2.9. Let T; (i = 1,2) be a measure-preserving transformation of a
probability space (X;,%;,m;). If T, and T, are conjugate then they are
spectrally isomorphic.

PROOF. Suppose ®:(%,,M,)— (#,,M,) is an isomorphism of measure
algebras such that #T5! = T7'®. Let V be defined as in Theorem 2.3. It
remains to show VU, = U V.

For B, € #, we have

Ur V(xs,) = Ur,(Xo8,) = XT{loB, = XoT;'B, = V(XT;‘EZ) = VUT;(XB;)-

Therefore Uy, V and VUr, agree on characteristic functions and hence on
linear combinations of characteristic functions. By their continuity we have
UTl V = VUTz‘ D

The following tells us when spectral isomorphism implies conjugacy.

Theorem 2.10. If T;(i =1,2) is a measure-preserving transformation of a
probability space (X;, #B;,m;) and if V:L*(m,) — L*(m,) is an invertible linear
isometry satisfying the conditions of Theorem 2.4 and Ur V = VUr,, then
T, and T, are conjugate.

PRrOOF. By Theorem 2.4 V is induced by an isomorphism of measure-algebras
D:(#,My) > (#,My) in the sense V(xz) = xos), B€ A, The equation
Ur,V(xs) = VUr,(xs) becomes yi-iop@) = Xoty1p and so T7'® =PT;

O

Spectral isomorphism is much weaker than conjugacy as we shall see in
the following. For one class of transformations spectral isomorphism implies
conjugacy. This class consists of ergodic transformations with discrete
spectrum and will be discussed fully in Chapter 3. An ergodic measure-
preserving transformation T of a probability space (X, %, m) has discrete
spectrum if L*(m) has an orthonormal basis { f;} consisting of eigenfunctions
of Uy (ie. Urf; = A, f; for some complex number A)). For this class of trans-
formations a basis member f; is mapped by Uy to a constant multiple of
itself. We now briefly discuss transformations which have the “opposite”
type of behaviour, in the sense that there is a basis where each basis member
is mapped by Uy to another basis member.
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Definition 2.9. Let (X, %, m) be a probability space (X, %, m) with a countable
basis (because we want L%*(m) to be separable). An invertible measure-
preserving transformation T of (X, 4, m) is said to have countable Lebesgue
spectrum if there is a sequence { f;} 52, with f, = 1, of members of L?(m) such
that {fo} U {U%f;|j = 1, ne Z} is an orthonormal basis of L*(m).

Diagramatically the basis has the form

fo=1
ey U'l_"zfla U;l.fla fl: UTfl: U%’fla cee
st U;2f27 U;le’f27 UTf27 U%fZ: e

We shall show in §4.9 that every Kolmogorov automorphism has count-
able Lebesgue spectrum. This implies that every Bernoulli shift has countable
Lebesgue spectrum. We shall now indicate why the two-sdied (3, 3)-shift T
has countable Lebesgue spectrum. Here the state space, {0,1} consists of
two points each with measure 4. A basis for the L2-space of the state space
consists of the constant function 1 and the map {0,1} — C given by t — e™,
t € {0,1}. The transformation T acts on the direct product space X = {0, 1}%
equipped with the product measure m. Since L%(m) is the tensor product
the L*-space of the state space there is a basis for L%*(m) of the form

G w7 = Lng <ny* -+ <n} U {1} where

g"l - ({xl}) — eni(x,,l+x,,2+A . .+x,,r).

Note that Urg,,, . .n. = G1+n,,....1+n,- It is nOW clear that we can rename the
basis so that it has the form {U%f;|i > 1,ne Z} U {1}.

One can use this method to show directly that the two-sided (p,, . . .,
Px—1)-shift has countable Lebesgue spectrum. It is also easy to give a direct
proof that an ergodic automorphism A4 of a compact abelian metric group
G has countable Lebesgue spectrum. The elements of the character group
G form an orthonormal basis. The ergodicity of A implies that if y € G and
y # 1 then the collection {/i"y|n € Z} consists of district characters. (Here
A is the dual automorphism to A4.) Therefore A has countable Lebesgue
spectrum once it is shown that there are infinitely many district sets of the
form {/i"y|n € Z} in G. This can be done by a simple group theory argument
(Halmos [1] p, 54).

The following results are elementary.

Theorem 2.11. Any two invertible measure-preserving transformations with
countable Lebesgue spectrum are spectrally isomorphic.

PROOF. Let (X;, %;,m;) i = 1,2 be a probability space and let T;: X; — X, be
an invertible measure-preserving transformation. Suppose L?(m;,) has a basis
{fo} W{Ut.fili=1, ne Z} where fy =1 and L*m,) has a basis {go} U
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Ut,9;lj = 1, ne Z} where g, = 1. Define W:L*(m,) — L*(m;) by W(go) =
fo, (UT,9) = UT, fj and extend by linearity. Then WU, = Uy, W and T,
and T, are spectrally isomorphic. O

It follows from this and the discussion above that any two Bernoulli
shifts are spectrally isomorphic. This was known in 1943 and only when
entropy was introduced by A. N. Kolmogorov in 1958 was it shown that
there are non-isomorphic Bernoulli shifts (see Chapter 4).

Theorem 2.12. If a measure-preserving transformation T of a probability
space (X, 9B, m) has countable Lebesgue spectrum it is strong-mixing.

PROOF. Let {fo} U {U%f;j=1,ne Z} be a basis of L*m) where f, = 1.
Then if j, ¢ >0 lim,_, (Ufo Tf,, U% f) = (U fo, DL, USf) Yk, ne Z,
since both sides are zero unless j = g =0 and then both sides equal one.
Fix k and g and consider

Jf,ml:{feLz( ): lim (U%f, U f) = (f, D(1, U';-ﬁ,)}

Then 4, , is a closed subspace of L*(m) and contains the basis by the above
calculation. Hence #5, , = L*(m). Fix f € L*(m) and let

&= {g € L¥m): lim (ULf,g) = (f, 1)(1,9)}-

p—®©

Then &, is a closed subspace of L%(m), contains the basis by the above,
and therefore is equal to L*(m). Hence

lim (USf,g9) = (f, 1)(1,9) Vf,geL*m). O

p— o0

§2.6 Spectral Invariants

Definition 2.10. A property P of measure-preserving transformations is a

isomorphism
conjugacy invariant if the following holds:
spectral
isomorphic
Given T, has P and T, is { conjugate to T,
spectrally isomorphic

then T, has property P.

Remark. A spectral invariant is a conjugacy invariant, and a conjugacy
invariant is an isomorphism invariant.
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The following shows that the properties we have considered up to now
are spectral invariants.

Theorem 2.13. The following are spectral invariants of measure-preserving
transformations: (1) ergodicity, (2) weak-mixing, (3) strong-mixing.

PROOF

(1) We know T is ergodic iff { f € L%m):Urf = f} is a one-dimensional
subspace, and the latter condition is preserved under spectral isomorphism.
(2) We know T is weak-mixing iff 1 is the only eigenvalue and T is ergodic,
and this is preserved under spectral isomorphism.
(3) Suppose WUy, = Ur W and T is strong-mixing. We have to show
that
(U',h,k) = (h, 1)(1,k)  Vh, k € L*(m,).

Since this is true if h is constant or if k is constant, it suffices to consider the
cases when (h,1) = 0 = (k, 1). Since T, is ergodic then T, is ergodic by (1)
and since W sends the invariant functions for T, onto those for T; W maps
the subspace of constants in L?(m,) onto the subspace of constants in L(m,).
So (Wh, 1) = 0 = (1, Wk). Since W preserves the inner product,

(Uth, k) = (WU, h, WK) = (U, Wh, WK) -0

since T is strong-mixing. Therefore T, is strong-mixing. Od

This theorem allows us to easily display non-spectrally isomorphic trans-
formations. For example a non-ergodic transformation (such as a rotation
of K by a root of unity) cannot be spectrally isomorphic to an ergodic
transformation (such as a rotation of K by a non root of unity). Also a
rotation of a compact group, which is not weak-mixing, cannot be spectrally
isomorphic to an ergodic automorphism of a compact group because such
automorphisms are weak-mixing.



CHAPTER 3
Measure-Preserving Transformations

with Discrete Spectrum

In this chapter we study a class of measure-preserving transformations for
which the conjugacy problem is solved and for which spectral isomorphism
implies conjugacy.

§3.1 Eigenvalues and Eigenfunctions

Definition 3.1. Let T be a measure-preserving transformation of the prob-
ability space (X, %,m), and let U be the induced linear isometry of L*(m).
The eigenvalues and eigenfunctions of Uy are called the eigenvalues and
eigenfunctions of T. So a complex number A is called an eigenvalue of T if
there is f e L?(m), with f not the zero function, satisfying Uy f = Af. The
function f is called an eigenfunction of T corresponding to the eigenvalue A.

The main properties are as follows.

Theorem 3.1. Let T be a measure-preserving transformation of a probability
space (X, 8, m) and suppose T is ergodic. Then the following are true.

() If Upf = Af, fe L¥m), f # 0, then |A| = 1 and | f] is constant a.e.

(ii) Eigenfunctions corresponding to different eigenvalues are orthogonal.

(iii) If f and g are both eigenfunctions corresponding to the eigenvalue A
then f = cg a.e. for some constant c.

(iv) The eigenvalues of T form a subgroup of the unit circle K.

PROOF

(i) We have ||Urf]|| = |4 || ]| so that ]| f]| = |A]||f]|- Since || /]| # O we have
|A| = 1. Then we have |Urf| = |4]| f] = | f| so by ergodicity | f] is constant a.e.

68
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(1)) Suppose A # u, Urf = Af, Urg = pg. Then
(f,9)=(Urf,Urg) = (Af, ug) = An(f, 9)

and Afi # 1 implies (f,g) = 0.

(ili) Since g is not the zero element of L?*(m) and |g| is constant a.e. by
(i) we have g(x) # 0 a.e. Then f/g is an invariant function for T and hence
constant a.e.

(iv) If A, u are both eigenvalues of T then f o T = Af, g o T = ug for some
non-zero f, g € L*m). By taking complex conjugates we have go T = fig
and so (fg) o T = (Af)(fg). Therefore Au~! = Al is an eigenvalue of T and
the eigenvalues of T form a subgroup of K. O

Note that (ii) and (iii) say that eigenspaces are one-dimensional and
mutually orthogonal. Because eigenspaces are orthogonal we know that if
L?(m) is separable then the group of eigenvalues of T is countable.

Remark. It is clear that if T, is spectrally isomorphic to T, then T, and T,
have the same eigenvalues.

§3.2 Discrete Spectrum

Definition 3.2. An ergodic measure-preserving transformation T on a prob-
ability space (X, 4%, m) has discrete spectrum (pure-point spectrum) if there
exists an orthonormal basis for L%(m) which consists of eigenfunctions of T.

Remark. If T has discrete spectrum then Up:L*(m)— L*(m) is clearly sur-
jective so that T~ '% = % (Theorem 2.8). Therefore if (X, %, m) is a Lebesgue
space or arises from a complete separable metric space then T is invertible
mod 0.

We shall need the following results for the proof of the main theorem of
this section.

Lemma 3.2. Let (X,%,m) be a probability space. Let h € L*(m). Then h is
bounded (i.e. 3c € R such that m({x| |h(x)| > c}) = 0) iff h - f € L¥m) for all
f € L¥(m).

PrOOF. If h is bounded then clearly h- fe L%m) when f e L*m). Now
suppose h is such that h - f € L*(m) whenever f € L*(m). Let
X,={xeX|n—1<|h(x)| <n}

for n> 1. Then {X,}7 partitions X. Let f(x)=>72, i"'m(X;)™?yx(x),
where it is understood that the i-term is omitted if m(X;) = 0.
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Then

© P 2
f|f|2dmszil2< oo but [|hf[dm = Y <’ : 1)
1 ieF

where F = {i|m(X,) # 0}. Since hf € L’(m) we have that F is finite and
therefore h is bounded. O

The following abstract group theoretic result is needed.

Lemma 3.3. Let H be a discrete abelian group and K a divisible subgroup
of H (i.e., Vke K and ¥Yn > 0 Ja € K such that a" = k). Then there exists a
homomorphism ¢:H — K such that ¢|x = identity (i.e., K is an algebraic
retract of H).

PROOF. Let £ consist of all retracts onto K from supergroups of K in H,
ie., # consists of all pairs (M, ¢) where Kc M cH and ¢:-M—>K is a
homomorphism such that ¢|x = identity. We know £ is non-empty as
(K, idg) € #. We order Z# by extension, i.e., (M, ¢,) < (M,,¢,)if M; = M,
and ¢,|M, = ¢,. This is a partial ordering and every linearly ordered subset
has an upper bound. So by Zorn’s Lemma there exists a maximal element,
say (L, p), of Z.

We claim that L = H. Suppose not, then consider g € H\L and let M
be the group generated by g and L.

Case 1. If no power of g lies in L then every element of M can be uniquely
written in the form g'a where a€ L, i € Z. We define y: M — K by y(g'a) =
p(a). We can easily check that  is a homomorphism and that y|; = id.
This then contradicts the maximality of (L, p).

Case 2. Let n be the least positive integer such that g" € L. Each element
of M can be uniquely written as g'a, where ae L, 0 < i < n — 1. Since K is
divisible, let g, € K be such that p(g") = ¢%. Then y(g'a) = g% p(a) defines a
homomorphism of M into K such that y|¢ = id,. Again, we have contradicted
the maximality of (L, p).

Therefore L = H. O

The following theorem due to Halmos and von Neumann (1942) shows
that the eigenvalues determine completely whether two transformations with
discrete spectrum are conjugate or not.

Theorem 3.4 (Discrete Spectrum Theorem). Let T; be an ergodic measure-
preserving transformation of a probability space (X;,%B;,m;) and suppose T;
has discrete spectrum, i = 1, 2. The following are equivalent:

(i) T, and T, are spectrally isomorphic.
(i) T, and T, have the same eigenvalues.
(i) T, and T, are conjugate.
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PRrROOF

(i) = (ii) is trivial.

(iii) = (i) is always true (Theorem 2.9).

(i) = (i). For each eigenvalue A, choose f; € L*(m,), g, € L*(m,) such
that Uy, f, = Af3, Ur,g9, = Agz and |fz| |gz| =1

We define W:L*(m,) — L%(m,) by W(g,) = f, and extending by linearity.
We readily see that W is a bijective isometry. Moreover WU, = U W by
checking this on the g,.

We now prove that (ii) = (iii). Let A4 denote the group of eigenvalues of
T, which we are assuming to equal the group of eigenvalues of T,. For
each A€ A choose f; € L*(m,) so that |f;| = 1 and Uy, f; = Af;. We know
that { f;:A € A} is a basis for L*(m,). Also choose g, € L*(m,) so that |g,| = 1
and Uy,g; = Ag;. We know that {g,:1 € A} is a basis for L*(m,). We have
forevery A, pue A

UTl,f).u = ;Luf:lu

Ur,(fi " fu) = fa(T) - f(T) = (Aw)(f3 - .)-

By (i) of Theorem 3.1 there exists a constant r(4, u) € K such that
£ £,(x) = r(A, W f3,(x) a.e. We shall use Lemma 3.3 to show that we can
suppose r(4, u) =

Let H denote the collection of all functions X — K. Clearly H is an
abelian group under pointwise multiplication. Moreover K is a subgroup of
H if we identify constant functions with their values.

By Lemma 3.3 there exists a homomorphism ¢:H — K such that ¢|x =
idg. Let % = @(f)f,- Then |f¥| =1, Urf% = Af¥ and {f}:4 € A} is a basis
for L?(m,). Also,

and also

[31% = SRS =SS if,
= ¢(r(2, W) d(f,)r(A 1) fo
= (4, WO(L)r(A 1) o
= [T
Thus without loss of generality we can assume that f, f, = f;,,. Similarly we
may as well assume g,9, = g,, V4, u € A.
Define W:L?(m,) — L*(m,) by W(g;) = f; and extended by linearity. The
operator W is bijective, linear and preserves the inner product. Also WU, =

Ur,W. If we can show that W satisfies the conditions of Theorem 2.4 then
by Theorem 2.10 T, and T, are conjugate. But

W(g}.gu) glu f).u fi.fu = W(gi.) W(gu)

Let h, k € L*(m,) and let k be bounded. If we fix g, and let a finite linear
combination of g,’s converge to h in L*(m,) we obtain that W(hg,) =
W(h)W(g,). Then if we let a finite linear combination of g,’s converge to k
in L(m,) we get that W(hk) = W(h)W(k). It follows from this and Lemma 3.2
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that W maps bounded functions to bounded functions because hk € L*(m,)
so W(hk) € L*(m,) Yh € L*(m,) and so W(k)f € L*(m,) for all f € L*(m;). O

Corollary 3.4.1. If T is an invertible ergodic measure-preserving transforma-
tion with discrete spectrum then T and T~ are conjugate.

PrOOF. They have the same eigenvalues. O

Remark. When the spaces (X,%,,m,), (X,,%,,m,) are both Lebesgue
spaces or both complete separate metric spaces then the statements in
Theorem 3.4 are also equivalent to T, being isomorphic to T’,.

§3.3 Group Rotations

We now discuss a class of examples of ergodic measure-preserving trans-
formations with discrete spectrum.

Let T:K — K be defined by T(z) = az where a is not a root of unity. We
know that T is ergodic. Let f,: K — C be defined by f,(z) = z" where ne Z.
Then

f(Tz) = f(az) = a"z" = a"f(2).

Thus f, is an eigenfunction with eigenvalue a". Since the {f,} form a basis
for L*(K) we see that T is ergodic and has discrete spectrum.

These ideas carry over to ergodic rotations on any compact abelian
group. Recall that G denotes the character group of a compact abelian
group G (see §0.7), and that we always use normalised Haar measure, m, on
such a group G if no other measure is mentioned. If G is not metrisable
then G is not countable.

Theorem 3.5. Let T, given by T(g) = ag, be an ergodic rotation of a compact
abelian group G. Then T has discrete spectrum. Every eigenfunction of T is
a constant multiple of a character, and the eigenvalues of T are {y(a):y € G}.

PROOF. Let y € G. Then
Y(Tg) = y(ag) = y(a)y(9)-

Therefore each character is an eigenfunction and so T has discrete spectrum
since the characters are an orthonormal basis of L*(m). If there is another
eigenvalue besides the members of {y(a):y € G} then the corresponding
eigenfunction would be orthogonal to all members of G, by (iv) of Theorem
3.1, and so is zero. Hence {y(a):y € G} is the group of all eigenvalues of T
and the only eigenfunctions are constant multiples of characters, using (iii)
of Theorem 3.1. O
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It turns out that such rotations are the canonical examples of measure-
preserving transformations with discrete spectrum.

Theorem 3.6 (Representation Theorem). An ergodic measure-preserving
transformation T with discrete spectrum on a probability space (X, %, m) is
conjugate to an ergodic rotation on some compact abelian group. The group
will be metrisable iff (X, %, m) has a countable basis.

PRrOOF. Let A be the group of all eigenvalues of T and give A the discrete
topology. So A is an algebraic subgroup of K but has the discrete topology.
(If L(m) is separable then A is countable). Let G = A, the character group
of A. Then G is compact and abelian. By the duality theorem (3 of §0.7)
G=Ais naturally 1somorphrc to A. For Ae A we shall let 1 denote the
corresponding element of G i.e. A(g) = g(1) Vg € G = A. The map a:4 —» K
given by a(1) = 4 is a homomorphism of the discrete group A into K and
so belongs to A = G. Therefore A(a) = a(4) = AVie A.

Define S:G — G by S(g) = ag. We claim that S is ergodic. Let u denote
Haar measure on G and suppose f o S = f, f € L*(u). Then f has a Fourier
serles f=Y;bjdj, 4;€ A From foS=f we have Y biAi@iig) =Y

Ai(g) so that b;A(a) = b;. Since A;(a) = 4; this gives b;A; = b Ifb # 0 then
/1 = 1sothat ;= 1. Therefore the only non- vamshmg term in the Fourier
series is the constant term and so f is constant a.e. We now know S is ergodic
and, by Theorem 3.5, it has discrete spectrum.

Again by Theorem 3.5 the group of eigenvalues of S is {y(a):y € G} =
{a(A):2e A} = {A:A € A} = A. Therefore S and T have the same eigenvalues
and both have discrete spectrum. By the Discrete Spectrum Theorem they
are conjugate.

The group G is metrisable iff A is countable and this is equivalent to L*(m)
being separable. O

Theorem 3.7 (Existence Theorem). Every subgroup A of K is the group of
eigenvalues of an ergodic measure-preserving transformation with discrete
spectrum.

Proor. The desired transformation is the rotation S constructed in the
proof of Theorem 3.6. O

The conjugacy problem for ergodic measure-preserving transformations
with discrete spectrum is completely solved. We have some very simple
invariants, namely the eigenvalues, which determine when two such trans-
formations are conjugate. Each conjugacy class of ergodic measure-pre-
serving transformations with discrete spectrum is characterized by a
subgroup of K, and each subgroup of K corresponds to a conjugacy class.
So for this class of transformations we get a very satisfying solution to the
conjugacy problem. Also there are some simple examples, namely group
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rotations, such that each ergodic measure-preserving transformation with
discrete spectrum is conjugate to one of these examples.

An extension of these results to a wider class of transformations has been
carried out by Abramov [1], Hoare and Parry [1] and Hahn and Parry
[1], [2]- This class is the collection of all transformations with quasi-discrete
spectrum. The invariant is not just one group but a sequence of groups
connected by homomorphisms. The canonical examples in this class are
certain affine transformations of compact abelian groups.



CHAPTER 4
Entropy

We are searching for conjugacy and/or isomorphism invariants. In 1958
Kolmogorov introduced the concept of entropy into ergodic theory, and
this has been the most successful invariant so far. For example, in 1943 it
was known that the two-sided (4, 4)-shift and the two-sided (3, 5, 3)-shift both
have countable Lebesgue spectrum and hence are spectrally isomorphic, but
it was not known whether they are conjugate. This was resolved in 1958
when Kolmogorov showed that they had entropies log 2 and log 3, respec-
tively, and hence are not conjugate. The notion of entropy now used is
slightly different from that used by Kolmogorov—the improvement was
made by Sinai in 1959.

The definition of the entropy of a measure-preserving transformation
T of (X, %, m) is in three stages: the entropy of a finite sub-g-algebra of 4,
the entropy of the transformation T relative to a finite sub-o-algebra, and,
finally, the entropy of T. Each stage of the definition is quite simple to state.
Before giving the definition we shall study finite sub-g-algebras of # and
give some motivation for the definition.

The definitions involve logarithms and we shall use natural logarithms.
This is because it will be more natural in Chapter 9, to tie in with some
ideas from statistical mechanics. Some authors use logarithms of base 2.

§4.1 Partitions and Subalgebras

Throughout this chapter (X, %, m) will denote a probability space.

Definition 4.1. A partition of (X, %, m) is a disjoint collection of elements of
% whose union is X.

75
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We shall be interested in finite partitions. They will be denoted by Greek
letters, e.g., & = {4y, ..., A}

If £ is a finite partition of (X, %, m) then the collection of all elements of
48 which are unions of elements of € is a finite sub-g-algebra of 4. We denote
it by «(&). Conversely, if € is a finite sub-o-algebra of %, say € = {%;:i =
1,...,n}, then the non-empty sets of the form B, n - - - n B,, where B; = C;
or X\C;, form a finite partition of (X, %, m). We denote it by &(%). We have
K (E(F)) = € and &(H()) = n. Thus we have a one-to-one correspondence
between finite partitions and finite sub-g-algebras of %.

Definition 4.2. Suppose ¢ and 5 are two finite partitions of (X, %, m). We
write £ <5 to mean that each element of £ is a union of elements of #.
(i.e. n is a refinement of &). We have &€ <n < A(&) = H(n), and & € € =
() < &(¥).

Definition 4.3. Let ¢ = {A4,,...,4,}, n={C,,...,C,} be two finite parti-
tions of (X, 4, m). Their join is the partition

¢vnp={A4;nCi:1<i<nl1<j<k}

If o/ and ¥ are finite sub-o-algebras of % then o/ v € denotes the smallest
sub-g-algebra of 4 containing </ and %.

Clearly &/ v consists of all sets which are unions of sets of the form
AnC, Ae s, Ce¥. We have {(A vE) = EA)V.EF), and L (Evy) =
A &) v L1).

Definition 4.4. Suppose T: X — X is a measure-preserving transformation. If
& ={A4,,...,A,]}, then T™"¢ denotes the partition {T "4, ..., T "4,} and
if &/ is a sub-c-algebra of # then T~ "(«/) denotes the sub-g-algebra
{T™"A:Ae A} (n>0)
If n > 0, then, since T™" preserves set theoretic operations, we have
AT ") = T"E(A)
AT =T "A()
T NAVvE)=T "IVvT "¢
T"Evn) =T "EvT ™™
E<n=>T""C<T™"n
AcE=>T " =T "8.

Definition 4.5. If €, 2 are (not necessarily finite) sub-g-algebras of # we write
€ < 9 if for every C e € there exists D e @ with m(D A C) =0. In terms
of measure algebras (see §2.1) this is equivalent to ¢ = J. We write ¥ = 2
if4 & 9 and 2 & 4. This is equivalent to € = 9. If ¢,  are finite partitions
then £ = 5 means (&) = o/ (n).



§4.2 Entropy of a Partition 77

If €, 2 are finite and ¥ = 9, then if £(€) = {Cy,...,C,,Cpuy, ..., C,},
where m(C;) >0 for 1 <i<p and m(C;))=0 for p+ 1 <i<gq, we have

2)={Dy,...,D,,Dp.1,...,Ds} where m(C; A D) =0for 1 <i< pand
mD)=0forp+1<i<s.

§4.2 Entropy of a Partition

We shall use natural logarithms, and the expression 0log 0 will be considered
to be 0. As in probability theory let us consider a partition & = {A4,,...,4;}
of (X,4%,m) as listing the possible outcomes of an experiment, where the
probability of the outcome A; is m(A;). We want to associate to this experi-
ment a number H(&) that describes the amount of uncertainty about the
outcome of the experiment. In other words, H(£) will measure the uncertainty
removed (or information gained) by performing the experiment represented
by & Suppose we want H(&) to depend only on the numbers {m(4,),...,

A}. We shall also denote H(¢) by H(m(A,), . ..,m(A4,)). What should
this function be? It turns out that the expression for H({) is determined if
one requires it to satisfy reasonable properties. To do this we shall derive
another function from H(¢).

Suppose & = {A4,,...,A4,} and n = {B,,...,B,} are two partitions of
(X, %, m) representing two experiments, and suppose we want to measure
the uncertainty about the outcome of ¢ if we are to be told the outcome
of n. If we know the outcome B; occurs then A; occurs with probability
m(A; N B;)/m(B;), so the uncertainty about the outcome of ¢ given B; occurs is

H m(A; N B]-) m(4, N B;) m(A4, N B))
m(Bj) ’ m(Bj) v m(Bj) .

Therefore the uncertainty about the outcome of &, given that we will be told
the outcome of 7, is

! (AL N Bj) m(4, N B)) m(A4, N B)
(x) H(&/Mm) = ZmB)H(( m(B) R (B, e m(B;) ))

The function H(&) is determined by the following result (where H(£) means
the same as H((m(A,), . .., m(4,)))).

Theorem 4.1. Let 4, ={(py,...,p) € R¥|p;>0, Yt ,p,=1}. Suppose
H:{J&, 4, — R has the following properties:

(i) H(py,---,p) 2 0,and H(py, . . . ,py) = O iff some p; = 1.
(ii) For each k > 1, H|,, is continuous.

(i) For each k > 1, H|,, is symmetric.

(iv) For each k > 1, H|4, has its largest value at (1/k, . . ., 1/k).
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(v) H(Evn) = H() + H(n/S), where H(¢/n) is defined from H by (*).
vi) H((pss - - -, 16 0) = H((py, - - -, P4).

Then there exists A > 0 such that H(py, . .. ,p)) = —A Yt~y p;logp;.

The properties listed in Theorem 4.1 are reasonable properties for H(&)
to satisfy. Property (i) says the only experiments that give no information
are those with only one possible outcome. Property (iv) means that among
the experiments with k outcomes the ones having most uncertainty about
their outcomes are those with equiprobable outcomes. Property (v) says
that the total information gained from performing two experiments £ and 5
is the information obtained by performing ¢ plus the information gained by
performing n knowing that ¢ has been performed.

The (elementary) proof of this theorem can be found on page 9
of Khinchine’s book [1]. This theorem motivates our definition of the
entropy of a partition. We shall prove that entropy has the properties
listed in Theorem 4.1.

Definition 4.6. Let o be a finite sub-algebra of # with &(&f) = {Ay, ..., A}
The entropy of o (or of {(=/)) is the number H(s/ )= H(é())= — Y =1 m(A))
logm(A)).

As mentioned above, H(&/) is a measure of the uncertainty removed
(or information gained) by performing the experiment with outcomes

{Ay, ..., 4.

Remarks

(1) If o = {X,¢} then H(&/) = 0. Here o represents the outcomes of a
“certain” experiment so there is no uncertainty about the outcome.
(2) Ifé(of) = {Ay, ..., A} where m(4;) = 1/k Vi then

I U |
H(s) = i; P logk =logk.

We shall show later (Corollary 4.2.1) that logk is the maximum value for
the entropy of a partition with k sets. The greatest uncertainty about the
outcome should occur when the outcomes are equally likely.

(3) H(«Z) = 0.

4) If o = € then H(«) = H(¥).

(5) If T: X — X is measure-preserving then H(T ™ './) = H(+/).

Several properties of entropy are implied by the following elementary
result.



§4.2 Entropy of a Partition 79

Theorem 4.2. The function ¢:[0,00) — R defined by

0 ifx=0

¢(x)={x'logx if x#0

is strictly convex, i.e., p(ax + By) < ap(x) + () if x, y € [0,00), o, =0,
o + B = 1; with equality only when x =y or . =0 or f = 0.

Y

By induction we get
k k
¢<Z O‘ixi> < ) w(x)
i=1 i=1

if x;€[0,00), 0; >0, Y¥_; o; =1; and equality holds only when all the x;,
corresponding to non-zero a;, are equal.

ProOOF. We have
¢'(x)=1+logx

¢"(x) = ;1; >0 on (0, 00).

Fix o, f with a > 0, § > 0. Suppose y > x. By the mean value theorem
d(y) — dlax + By) = ¢'(z)a(y — x) forsome z withay + fy <z <y
and
olax + By) — ¢p(x) = ¢'(W)B(y — x) for some w with x < w < ax + By.
Since ¢” > 0, we have ¢'(z) > ¢'(w) and hence
BB(y) — dlox + By)) = ¢ CJuBly — x) > (waBl(y — x)
= a(p(x + By) — ¢(x)).

Therefore ¢(ax + fy) < agp(x) + pop(y) if x, y > 0. It clearly holds also if
x,y>0and x # y. O
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Corollary 4.2.1.If £ = {A,,..., A} then H(&) < logk, and H(E) = logk only
when m(A4;) = 1/k for all i.

PrOOF. Put o; = 1/k and x; = m(4)),1 <i<k. 0O

§4.3 Conditional Entropy

Conditional entropy is not required in order to give the definition of the

entropy of a transformation. It is useful in deriving properties of entropy,

and we discuss it now before we consider the entropy of a transformation.
Let &/, € be finite sub-c-algebras of # and

)= {Ay,.. A}, EB)={Cy...,C,}.

The discussion in §4.2 suggests the following definition.

Definition 4.7. The entropy of </ given € is the number

P k C,; N C;

H(&(t)/4(#)) = H([%) = = 3, m(C) 3, i m) 2y ogm(i‘(g, .
B (A N C))
= = m A N C )1 (C]) ’

omitting the j-terms when m(C;) = 0.

So to get H(#//%) one considers C; as a measure space with normalized
measure m(*)/m(C;) and calculates the entropy of the partition of the set
C; induced by (&) (this gives

and then averages the answer taking into account the size of C;. (H(//%¥)
measures the uncertainty about the outcome of ./ given that we will be
told the outcome of %.)

Let A" denote the o-field {¢, X}. Then H(&//A") = H(&/). (Since A
represents the outcome of the trivial experiment one gains nothing from
knowledge of it.)

Remarks
(1) H/¥) = 0.

) If o/ = D then H(4/€) = H(D/F).
(3) If ¢ = 9 then H(/ /%) = H(s4/D).
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Theorem 4.3. Let (X,%,m) be a probability space. If £, €, D are finite
subalgebras of & then:

(i) H& v¥/9)=H(A/D)+ HE /A Vv D).

(i) H& v¥)=H(«) + HE/H).

(ill) & €€ = H(A/D) < H(¥/D).

(iv) & < € = H(«) < H(¥).

(V) 4 <2 = HA/C) > HAL/D).

(vi) H(«/) = H(H/9).

(vii) H( v¥€/9) < H /D) + H¥/2D).
(viii) H(&/ v¥€) < H&) + H(%).

(ix) If T is measure-preserving then:

H(T 's//T™'¢) = H(4/%), and
(x) H(T™'s/) = H().

(The reader should think of the intuitive meaning of each statement. This
enables one to remember these results easily.)

PrOOF. Let &() = {4}, &%) = {C;}, &2) = {D,} and assume, without loss
of generality, that all sets have strictly positive measure (since if &(/) =
{Ay, ..., k} with m(4;) >0, 1 <i<rand m(4;) =0, r <i <k we can re-
place &) by {Ay,..., A,_1, A, U A,y U - U A} (see remarks (2), (3)
above).

A .
(i) Ht v E/D) = — T m(A;  C;  Dylog A0 Ci 0 D)
ik m(D,)
But

m(4; n C; ka) m(4; 0 C; n D) m(A; n Dy)
m(Dy) m(A; N Dy) mDy) '

unless m(A4; n D,) = 0 and then the left hand side is zero and we need not
consider it; and therefore

H(A v 6/D) = —“ka(A,. A C;n Dy log—%
m(A; N C; N Dy)
m(A; © Dy)
m(A; N Dy)
m(Dy)

— H(/D) + H®/|A v D).

ik

= —Y m(4; n Dy)log + H(¥/ v D)
ik

(ii) Put @ = A& = {¢, X} in (i).
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(i1i) By (i)
H(%/9)= H(A v¥€/9)= HH/D) + HE/L v D) = HA /D).
(iv) Put @ = A in (iii).
(v) Fix i,j and let
“ETmE) 0 T T mby

Then by Theorem 4.2
k m(C)) m(Dy) k m(C;) m(Dy)
but since ¥ = 2 the left hand side equals
¢<m(A,~ N Cj)> _mA;inC) logm(Ai o) Cj).
m(C)) m(C)) m(C))
Multiply both sides by m(C;) and sum over i and j to give
m(A; N Dy)

m(4; n C)) m(A4; N Dy)
m(4; n C)log—————=< > m(D, n C; log
2 mid; 0 C)log=0 y=n < 2, mDy 0 €)= (D)

_ m(A4; n Dy) m(A; n D)
=m0 Dy 8 D,

or —H(s#/%) < — H(/ /D). Therefore, H(s//D) < H(/%).
(vi) Put € = A in (v).
(vii) Use (i) and (v).
(viil) Set 2 = A in (vii).
(ix), (x) Clear from definitions. O

The following also fits in with our intuitive ideas

Theorem 4.4. Let o, € be finite sub-algebras of %. Then

(i) Hs#/¥)=0(i.e. HL vE)=H®)) iff & & F.
(i) H(# /%) = H(A) (i.e. H v¥€) = H() + H(®)) iff & and € are in-
dependent (i.e. m(A N C) = m(A) - m(C) whenever A € &/, C € b).

ProOF. Let &)= {A;,..., A4}, &¥)={C,,...,C,}. Without loss of
generality we can assume all these sets have non-zero measure.

(i) &/ & % means for each i and each j either m(4; n C;) = m(C)) or
m(A; n C;) = 0. Clearly this implies H(%//%) =
Suppose H(/ /%) = 0. Then

m(A; ~ C)
- m(A; n C)l1 — 7
.2?% N Clog— e
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and since

m(4; 0 C))
m(A4; 0 Cjlo m(C) >0
we must have ( c)
m(A; n C;
AN Cllog— )7 —
m(A; n Cj)log m(C) 0

for each i, j. Hence either m(4; n C;) = m(C;) or m(A4; 0 C;) = 0. Therefore
A EE.

(ii) If o and ¥ are independent we quickly see from the definition of
H(</ /%) that H(o/ /%) = H(«/). To prove the converse suppose H(&//€) =
H(s/). Then

.NC. k
- Z Z (4;n C) r"(:q'(—gj)’)= — ). m(A)logm(4). (%)

i=1j=1 i=1
If we fix i and apply Theorem 4.2. with «; = m(C;) and x; = m(4; N C;)/m(C})
we get

m(4; ~ C))

14
—_ Z m(4; n C;)log m(C) < —

j=1

m(A;)logm(A;) ()

with equality only when m(4; n C;)/m(C;) does not depend on j. If a; denotes
this constant value then by summing the equations m(4; N C;) = a;m(C))
over j we have a; = m(4;). Hence equality holds only when m(4; n C)) =
m(C;m(A;). However equation (*) says equality holds in (+x) for each i and
so m(A; 0 C;) = m(C;)m(A;) for all i, j. Therefore m(A N C) = m(C)m(A)
whenever Ae o/, Ce¥. O

Theorem 4.5. Let V denote the space of all finite sub-algebras of % where
two finite algebras o/ € are identified if o/ = €. Then d(/,%4) = H(L/€) +
H(€/s) is a metricon V.

(A corresponding statement about the space of finite partitions can be made).

PrOOF. We have d(s/,%) > 0 and equality holds iff &/ = & (Theorem 4.4).
Also H(/9) < H(/v¥/2) = H¥/2) + HA /¢ VvD) < HE/2) +
H(so/ /%) and similarly H(2/s/) < H(€/s/) + H(2/%). Therefore d(,2) <
d(f,6) + d(€, D). O

We can also define conditional entropy H(&//%) when & is a finite
sub-g-algebra of 4 and & is an arbitrary sub-g-algebra of 4. To do this
we use the conditional expectation map E(-/%): LY (X, #,m) » LY (X, %, m).
If € is a finite sub-o- algebra of Bwith &) = {C,,...,C,} then E(f/)(x) =

P_1 Xc,(x)(1/m(C))) f¢, fdm. If o is also finite and E(t) = {Ay, ..., A}
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then

H(st/6) = — Y. m(4; Cj)logm(;ii—(g)ci)

k
==Y [xalogE(us/®)dm
i=1

k
— [ ¥ E(a/®)log El,,/6)dm.
i=1
This leads to the following definition.

Definition 4.8. Let (X, %, m) be a probability space. If o7 is a finite sub-o-
algebra of # with &(&/) = {A,, ..., A,}, and & is an arbitrary sub-c-algebra
of % the entropy of &/ given & is the number

H(|F) = = [ T E(a/F)logE(xa/F)dm

Remark. Since E( /%) is a positive linear operator and Y f_; x,, =1 we
have 0 < E(y,,/%)(x) < 1 a.e., and therefore

- Zk: E(x4,/% )(x)log E(y4,/% )(x) < k max (—tlogt) = ke.

i=1 te[0,1]

Hence H(«/ /%) is finite.

One can show that the properties listed in Theorem 4.3 are satisfied by
this more general conditional entropy. However, they can also be deduced
from Theorem 4.3 (in the case when (X, %,m) has a countable basis) by
using a limit theorem that we shall use for another purpose. To prepare
for the proof we give the following lemma. If {#,}¥ is a family of sub-o-
algebras of 4 we let \/;‘,"=1 &, denote the smallest sub-g-algebra containing
all the #,.

Lemma 4.6. Let (X,%,m) be a probability space and let {&,}T be an in-
creasing sequence of sub-c-algebras of #. Denote \/-, F, by F. For each
f e LA(X, B, m) we have

|E(f/Z2) — E(f/F)||2— 0.
ProoF. Recall that E(/.%,) is the orthogonal projection of L%(X, %, m) onto

L*(X, #,,m). Let Be #. Choose B,e %, with m(B, A B)— 0. Since
E(yp/%,) is that member of L*(X, %,, m) closest to x5 we have

|EGis/%) — xsll5 < ||xs, — x8l|3 = m(B, A By — 0.

Since finite linear combinations of characteristic functions are dense in
L*(X,#,m) we have ||E(h/#,) — h||, >0 for all he L*(X,%,m). Hence
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if f e LA(X, %B,m),
\E(f/F2) — E(f/F)||2 =0 because E(E(f/F)/F,) = E(f/#). O

Remarks

(1) The same result holds for a decreasing sequence of {%,}{ sub-o-
algebras with (2, £, = Z.

(2) If f e LY(X,8,m) and {%,}T increase to # then Doob’s martingale
theorem implies E(f/%,) — E(f/%) ae. and in LY(X,%,m). The corre-
sponding statement holds for a decreasing sequence of o-algebras (see
Parthasarathy [2], p. 230).

Theorem 4.7. Let (X, %, m) be a probability space. Let o/ be a finite sub-
algebra of B and let {F,}T be an increasing sequence of sub-c-algebras of
B with\/;>y F,= F. Then H(L|F,) > H(L|F).

PrROOF. Let &(/) = {4y, ...,A,}. From Lemma 4.6. we know that for each i
|E(XA.~/9'-,,) - E(XA.-/g'-)Hz - 0.

Therefore E(y4,/%,) converges in measure to E(y,,/# ) and hence

k
S ; E(x 4,/ ) 108 E(x 4,/ F3)

converges in measure to — Y ¢—; E(x,/#)logE(x4/%). Since all these
functions are bounded by ke we know we have convergence in L*(m) too.
Therefore H(&/ /| %,) - H(AL |F). Od

Remarks

9

(1) The same result holds for a decreasing sequence {#,}{ of sub-o-
algebras with ();2, %, = Z.

(2) When (X, %, m) has a countable basis the statements of Theorem 4.3
(where 2 is now an arbitrary sub-g-algebra of %) hold by choosing an
increasing sequence {2,}7 of finite sub-algebras with 9, » 2 and using
Theorem 4.7.

We have the following extension of Theorem 4.4.

Theorem 4.8. Let (X,%,m) be a probability space and let of, & be sub-o-
algebras of B with of finite. Then

() HA/F)=0 iff L & F.
(i) H /)= H() iff o and F are independent.
PROOF. Let &() = {Ay, ..., A}

(i) If o & F then E(y,,/%)(x) takes only the values 0, 1 so H(=//%) = 0.
Conversely, if 0 = H(#/F) = [ =Y t_; E(xa,/F)10gE(y4,/F)dm then
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since — E(x,,/7)(x)1og E(y4,/%)(x) = 0 we have that for each i, E(y,,/%)
takes only the values 0, 1. Therefore & & &#.

(i) Suppose H(s//F) = H(sf). Let B e #. Let @ be the finite sub-algebra
consisting of the sets {¢, B, X\B,X}. Then 2 ¢ & and H(&/) > H(« /2) >
H(«//%)= H(). Hence H(«/) = H(/ /D) so m(A n B) = m(A)m(B) for
all A € o/, by Theorem 4.4. Therefore .« and & are independent.

If o and & are independent then for each A e & E(x,/%)=m(A)
(because [ E(x4/F)dm = [pydm = m(A)ym(F) for all Fe & and E(y,/%)
is the only & -measurable function with this property). Therefore H(«/ /%) =
H(). O

§4.4 Entropy of a Measure-Preserving
Transformation

Recall that if &(/) = {A4,, ..., A} then
H(()) = H() = Z A logm(A4;).

The second stage of the definition of the entropy of a measure-preserving
transformation T is given in the next definition. Recall that the elements
of the partition &(\//=8 T™'e/) = \/iZ4 T 'é(s#) are all sets of the form
(V28 T4,

i=0 Ji

Definition 4.9. Suppose T:X — X is a measure-preserving transformation
of the probability space (X, %, m). If & is a finite-sub-g-algebra of # then

W(T,&(st)) = h(T, ) = lim 1H<n\_/1 T- w)

n->c N i=0

is called the entropy of T with respect to /. (Later (in Corollary 4.9.1) we
will show that the above limit always exists. In fact (1/m)H(\/{=§ T~ ')
decreases to h(T, /).)

This means that if we think of an application of T as a passage of one
day of time, then \/[Z¢ T ‘s represents the combined experiment of per-
forming the original experiment, represented by &/, on n consecutive days.
Then h(T, &) is the average information per day that one gets from per-
forming the original experiment daily forever.

Remark. h(T, <) > 0.

We can now give the final stage of the definition of the entropy of a
measure-preserving transformation.
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Definition 4.10. If T:X — X is a measure-preserving transformation of the
probability space (X, %, m) then h(T) = sup h(T, /), where the supremum
is taken over all finite sub-algebras .« of 4, is called the entropy of T. Equiv-
alently h(T) = suph(T,&) where the supremum is taken over all finite
partitions of (X, 4, m).

If, as above, we think of an application of T as a passage of one day of
time then h(T) is the maximum average information per day obtainable
by performing the same experimenti daily.

Remarks

(1) A(T) = 0. h(T) could be + co.

(2) h(idy) = 0. If h(T) =0 then h(T,o/) =0 for every finite ./, which
implies that \/7=§ T ™'/ does not change much as n — co.

(3) If logarithms of some other base are used then the entropy of a
transformation is changed by a multiplicative constant that depends only
on the base. Some authors use logarithms of base 2.

We shall now show the existence of the limit in Definition 4.9. We shall
do this in two ways. The first method uses a simple result on sequences of
real numbers and can also be applied to prove the corresponding result
for topological entropy, while the second method uses properties of condi-
tional entropy but gives a stronger result.

Theorem 4.9. If {a,},- , is a sequence of real numbers such that a, . , < a, + a,
Vn, p then lim,,_, , a,/n exists and equals inf, a,/n. (The limit could be — oo but
if the a, are bounded below then the limit will be non-negative.)

ProOOF. Fix p > 0. Each n > 0 can be written n = kp + i with 0 < i < p. Then

W _ Givip G Gy _ G kay a4 a,
n itkp—kp kp Skp kp kp p°

As n— oo then k — o0 so

lim G < i
n D
and therefore
Tim 2 < inf 2.
n p
But
inf 22 < lim Gn
p n

so that lim a,/n exists and equals inf a,/n. O
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Corollary 4.9.1. If T:X — X is measure-preserving and of is a finite sub-
algebra of 2 then lim,_, ., (1/m)H(\/?Z§ T~'s/) exists.

PrOOF. Leta, = H (\/E‘; 6 T7'4) > 0. Then
n+p-—1 .
Gy = H< v/ rw)
i=0

n—1 . n+p—1 )
<H (,\/ T“d> +H < V T‘w> by Theorem 4.3(viii).

i=0

p—1
=a, + H< T"Le/) by Theorem 4.3(x)

i=0
=a, + a,.

We then apply Theorem 4.9. O

Theorem 4.10. If T: X — X is measure-preserving and & is a finite sub-algebra
of B then (1/mH(\/1=¢ T~ of) decreases to h(T, o).

Proor. We first show, by induction, that
n—1 n—1 Jj
H< T"&¢>=H(d)+ Y H(d/\/ T_".M).
i=0 j=1 i=1

For n =1 it is clear, and if we assume it true for n = p then it also holds for
n=p+ 1 because

() 7)) 7t

=H<' |

p
= H< T"Lzzf) + H<d/\/ T"ﬁz() by Theorem 4.3(x)
i i=1

i=0

<=

<

P
T"&f) + H(le/\/ T‘ﬂd) by Theorem 4.3(ii)
i=1

N
|

4 I by the induction
= H() + j; H<&i/iy1 T "y> assumption.

Thus the claimed formula hplds for all n. From this formula and Theorem
4.3(iii) we have H(\/7Z} T~'o/) > nH(//\/?=, T~'s/) so that

() () 740 (o 1)

<(n+ DH <v T—w).

i=0
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Hence

(st

i=0
We now show h(T) is a conjugacy invariant.

Theorem 4.11. Entropy is a conjugacy invariant and hence an isomorphism
invariant.

Proor.Let T,:X,—> X, T,:X,— X, be measure-preserving and let
d: (.%’z,mz) (@bml) be an isomorphism of measure algebras such that
OT; = T7'®. Let o, be finite, o/, = B,, and &(,) = {Al, ces A
Choose B; € %, such that B; = ®(4;) and so that n = {B;,...,B,} forms a
partition of (X, 4, m,). Let &, = ().

Now (2§ T1'B,, (where g;e{1,...,r}) has the same measure as
(\iZs T;'A,, since

n—1 n—1 n—1
qs(ﬂ (T3'A4,) ) = q>< N T;iAqi> = N Tiiod,)
i=0 i i

Thus H(\/}Z§ T7 'Jz/, H(\/?Z§ T3's#,) which implies that h(Ty, o) =
h(T,, o/,) which in turn implies h(T,) > h(T,). By symmetry we then get
that h(T,) = h(T,). O

The proof of Theorem 4.11 also shows that if T, is a factor of T, (or a
semi-conjugate image) then h(T,) < h(T).

After we have developed some properties of h(T, /) and h(T) we shall
consider the problem of how to calculate h(T). These calculations and
Theorem 4.11 will allow us to give examples of non-conjugate measure-
preserving transformations.

§4.5 Properties of h(T,o/) and h(T)
Recall that

n—-co N

(T, &) = lim 1H(n\/1 T" w)

Theorem 4.12. Suppose o/, € are finite subalgebras of # and T is a measure-
preserving transformation of the probability space (X, %, m). Then

(i) h(T, ) < H(s).
(i) h(T, s v €) < h(T, ) + h(T,%).
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(ill) & =€ = (T, ) < WT,¥).
(iv) (T, ) < h(T, %) + H(KL/¥).
(v) W(T, T~ o) = h(T, ).
vi) If k> 1, W(T, ) = h(T, \/¥2§ T~').
(vii) If T is invertible and k > 1 then

WT,sf) = h(T, \k/ T‘M).

i=—k
ProoF

n—1 n—1
(i) lH(\/ T"d)s% Y. H(T'sf) by Theorem 4.3
noo\; .

H(s/) by Theorem 4.3(x)
(n\_/1 T_"Mv"l\_/1 T_i(g>
(\/ T" ’d)—i— H<"\/1 T ‘%)

by Theorem 4.3(viii).

n &
H
(ii) H<"\/1 T s v%))

(iii) If o/ = ¥ then

n—1
\/Twc\/T'qg nx>1

i=0 i=

so one uses Theorem 4.3(iv).

SR VAR L (WS R WARY)

by Theorem 4.3(iv)

o re)en((F ) ()

by Theorem 4.3(ii).
But by Theorem 4.3(vii),

() ()< 5w ()

n—1

< Y H(T 'o/T~'¢) by Theorem 4.3(v)
i=0

= nH(&/ /%) by Theorem 4.3(ix).
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Thus,

H (\_/1 T—w> <H (\_/1 TM) + nH(s2/%).
i i=0

i=0

i=0

(v) H (\”/ ) H <n\_/1 T"d) by Theorem 4.3(x), so

WT, T~ 'sf) = W(T, o).

(vi) h(T,\Z/ T ie/ )-jingonH<\_/ <\=/ T w))

j=0
k+n—
- tim (7Y 7w
. k+n—l 1 k+n—1 .
=,}1.,n30< n >k+n—1 <\/0 r d)
= (T, ).
(vii) (T \/ T ’.;zl) <T,<;T_i.$2(> by (v)
= h(T,&/) by (vi). O

Corollary 4.12.1. If o/, € are finite sub-algebras of % we have
|n(T, o2) — h(T,%)| < d(#,%), so that h(T,") is a continuous real-valued
function on the metric space (V,d) introduced in Theorem 4.5.
PRrOOF. By (iii)
[W(T, 50) — h(T,9)| < max(H(st /%), H(&/sH))
< d(,%). O

We can deduce from Theorem 4.12 some simple properties of h(T).

Theorem 4.13. Let T be a measure-preserving transformation of the probability
space (X, B, m).

(i) For k> 0, h(T*) = kh(T).
(ii) If T is invertible then h(T*) = |k|h(T) Vk € Z.
PROOF
(i) We first show that
k—1
h<T", \/ T"&i) = kh(T, /) ifk>0.

i=0



92 4 Entropy

This follows since

1 k—1 . k—1 . k nk—1 .
lim EH<\/ T"‘J<\/ T"d)): lim ——H< \/ T-w)
j=0 i=0 i=0

n— oo n~w nk
= kh(T, ).
Thus,
kh(T)=k- sup h(T,&)=sup h<T", k\_/: T“&i)

o finite o

< sup h(T* %) = h(T").
€

Also, h(T*,#) < h(T*, \/¥2§ T~'o/) = kh(T, /) by Theorem 4.12(iii) and so,
h(T*) < kh(T). The result follows from these two inequalities.
(i) It suffices to show that h(T~') = h(T) and all we need to show is that
h(T™!, o) = h(T, o) for all finite «7. But
n—1 n—1
H< \/ T’M) = H<T_("") \/ T'ﬁz/) by Theorem 4.3(x)
i=0 i=0
n—1 .
=H < \/ T"d). O
j=0
We shall obtain more information on how h(T') behaves relative to natural
operations on transformations when we have proved some results that make
these calculations simpler. The following result allows us to understand when
h(T,f) is zero (Corollary 4.14.1) and allows us to conclude that a non-

invertible measure-preserving transformation T which is not mod 0 invertible
(ie. T~'%# # %) must have (strictly) positive entropy (Corollary 4.14.3).

Theorem 4.14. If o/ is a finite sub-algebra of % and T is a measure-preserving
transformation of (X, %, m) then

(T, o) = lim H(y/< y T-w»: H(d/{o/ T‘id>.
n— oo i=1 i=1

ProoF. The limit exists since the right hand side is non-increasing in n by
virtue of Theorem 4.3(v). We know from the proof of Theorem 4.10 that for

n>1
n—1 n—1 J
H< T"'.pi>=H(¢z¢)+ » H(d/(\/ T-w».
i=0 j=1 i=1

The desired result follows from dividing by »n and taking the limit, since the
Cesaro limit of a convergent sequence of real numbers equals the ordinary
limit. The last equality is by Theorem 4.7. O

We can now deduce which finite sub-algebras have h(T, &) = 0.
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Corollary 4.14.1. Let T be a measure-preserving transformation of the prob-
ability space (X, B, m). Let & be a finite subalgebra of 8. Then h(T, o) =0
iff o &\/i2, T™ .

Proor. By Theorems 4.14 and 4.8. 0O

Intuitively, this result says that the average information per day from per-
forming the experiment, represented by &, is zero exactly when the outcome
on the first day can be determined from combined knowledge of the outcomes
on all subsequent days (the future determines the present).

Corollary 4.14.2. Let T be a measure-preserving transformation of the prob-
ability space (X,%,m). Then h(T) = 0 iff for every finite sub-algebra o of
B we have f & \/2, T™'oA.

We can now conclude that a genuinely non-invertible measure-preserving
transformation must have non-zero entropy.

Corollary 4.14.3. Let T be a measure-preserving transformation of the prob-
ability space (X, B,m). If h(T)=0 then T"'#B = B (so T is invertible mod
0if (X,8B,m) is a Lebesgue space or a complete separable metric space).

ProOF. Let B € 4 and let & be the finite algebra {¢, B, X\B, X }. By Corollary
4.142 we have o/ & \/{2, T~'o/ = T~ '4. Since B is an arbitrary element of
% we have B = T~ '4. O

We can strengthen this to the following.

Corollary 4.14.4. Let T be a measure-preserving transformation of the prob-
ability space (X, B, m). Suppose h(T) = 0. If F is a sub-c-algebra of & with
T'F & F then T 'F = F.

Proor. The transformation T induces a measure-preserving transformation
T|x.#.m of (X, %,m) and it clearly has zero entropy. Apply Corollary 4.14.3
to this transformation. O

Remark. There is the following important result known as the Shannon-
McMillan-Brieman theorem: Let T be an ergodic measure-preserving trans-
formation of the probability space (X, %,m) and let & be a finite partition of
(X, %, m). Let B,(x) denote the member of the partition \/}=¢ T~ to which
x belongs. Then —(1/n) log m(B,(x)) — h(T, &) a.e. and in L'(X, 8, m). (For a
proof see Parry [2].) Hence if h(T, &) > 0 one can say that m(B,(x)) goes to
zero with exponential rate e "™ for a.e. x € X. One can deduce that if
¢€(0,1) is given and g,(¢) denotes the smallest number of elements of
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\/?24 T required to give a set of total measure at least 1 — &, then (1/n)
log g,(e) — h(T, ). .

One can obtain Corollary 4.9.1 from the Shannon—-McMillan—Brieman
theorem by integration.

§4.6 Some Methods for Calculating /(T

It is difficult to calculate h(T') from its definition because one would need to
calculate h(T, o) for every finite sub-algebra /. We consider what conditions
on a finite sub-algebra &7 are needed to ensure h(T) = h(T, /) (and hence
simplify the calculation of h(T)), and also consider what conditions on a
sequence {2/} of sub-algebras would imply h(T) = lim,_, , h(T, ). These
results lead to methods of calculating h(T) for specific examples of measure-
preserving transformations and they also lead to proofs of further properties
of h(T).

The main ingredient in the proofs of the above results is Theorem 4.16.
We shall prove it using the following.

Lemma 4.15. Let r > 1 be a fixed integer. For each ¢ > 0 there exists 6 > 0
such that if £={A,,...,A,}, n={Cy,...,C,} are any two partitions of
(X, B, m) into r sets with Y 7—y m(4; A C;) < & then H(é/n) + H(n/¢) < e.

ProoOF. Let ¢ > 0 be given. Choose 4 > 0 so that § < Land —r(r — 1)d log
0 — (1 — d)log(1 — 0) < &/2. Let{ be the partition into the sets A; N C; (i # j),
and | Ji—; (4; n C). Thenévn=nv{andsince 4, n C;< (Jio; (4, A C,)
(i # j) we have
m(4; N C) <8 (i#)) andm(U(A,. N C,-)>> 1-—6.
i=1

Hence H(() < r(r— 1)dlogd — (1 — d)log(l — 6) < ¢/2. Therefore H(n) +
H(/m)=H(Evn)=Hnv{) < Hn) + H({) < H(n) + ¢/2, and so H(¢/m) <
¢/2. By symmetry (since & vy = ¢ v () we have H(n/¢) < ¢/2. O

Remark. For r > 1 let ¥, denote the space of all ordered finite partitions of
(X, %, m) into r sets where two partitions & = {4,,...,4,} n={Cy,...,C,}
are identified if m(A4; A C;) = 0 for all i. A metric on ¥, is given by p(&, #) =
YioymA; ACYifE={Ay,..., A} n={Cy,...,C}. If (V,d) denotes the
metric space introduced in Theorem 4.5 then Lemma 4.15 says that the
inclusion map from (¥,, p) to (¥, d) is uniformly continuous.

Theorem 4.16. Let (X, %, m) be a probability space and %, be an algebra such
that the o-algebra generated by % (denoted by B(B,)) satisfies B(B,) = B.
Let € be a finite sub-algebra of 9. Then for every ¢ > 0, there exists a finite
algebra 9, 2D < B, such that HD/€) + H(¥/2D) < e.
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Proor. Let &%) = {Cy,...,C,}. Let ¢ > 0 and choose é to correspond to
r and ¢ in Lemma 4.15. It suffices to show that for each ¢ > 0 we can find a
partition {D, ..., D,} with D; € 8, and m(C; A D;) < o for each i. To do this
choose A > 0 such that A(r — 1)[1 + r(r — 1)] < o, and for each i choose
B; € B, such that m(C; A B;) < 4. If i # j then B; n B; = (B; A C;) U (B; A
Cjsothatm(B; N Bj) <2A.LetN = U#j(Bi N Bj. Wehavem(N) <r(r — 1)
Set D;= B\Nfor1 <i<rand D, = X\| Jiz{ D;. {Dy, ..., D,} is a partition
of X and each D; e 4,. If i < r then D; A C; = (B; A C;) u N and so,

mD;AC) < A[1 +r(r—1)]<o.
However, D, A C, = | JiZ] (D; A C;) and therefore
mD,AC)<(r—DA[1+r(r—1)]<o.
So the theorem is proved. 0O

If {s,} is a sequence of sub-g-algebras of # then \/, o, denotes the
sub-g-algebra of # generated by {s7,} ie. \/, &, is the intersection of all
those sub-o-algebras of # that contain every </, We shall use U,, &, to
denote the collection of sets that belong to some 7, If {,};%, is an in-
creasing sequence of sub-c-algebras then (), &, is an algebra, but not
necessarily a g-algebra.

Corollary 4.16.1. If {.M,,} is an increasing sequence of finite sub-algebras of
B and € is a finite sub-algebra with € & \/, o, then H(€/s4,) — 0 as n — .

PrOOF. If B, = ( J%; ;then A, is an algebra and 4 & %(%,) by hypothesis.
Let ¢ > 0. By Theorem 4.16 there exists a finite sub-algebra 9, of %, such
that H(%/2,) <& But 9, < &, for some j, since Z, is finite. If j > j,
Theorem 4.3(v) gives H(6/</;) < H(€/%/;,) < H(€/2,) < e.

Thus H(€/,) — 0. O

The main methods for calculating h(T) are supplied by the next two
theorems.

Theorem 4.17 (Kolmogorov-Sinai Theorem). Let T be an invertible measure-
preserving transformation of the probability space (X* %B,m) and let & be a
finite sub-algebra of B such that \/}? T'sf = B. Then h(T) = h(T, ).

n= —oo

PRrROOF. Let € = 4 be finite. We want to show that h(T,%) < h(T, /). For
n>1,

WT,€)<h <T, \/ Ti%) + H(% / \/ TM) by Theorem 4.12(iv)

i=-n i=-—n

= h(T,s) + H(%/ \/ T“&f) by Theorem 4.12(vii).

i=-n
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Let o, = \/7-_, T'/. It suffices to show that H(%/s/,) goes to zero as
n — oo. This follows by Corollary 4.16. O

A similar result holds when T is not necessarily invertible:

Theorem 4.18. If T is a measure-preserving transformation (but not necessarily
invertible) of the probability space (X, %, m) and if o/ is a finite sub-algebra
of B with\/{Zo T™'f = B then h(T) = h(T, ).

ProoF. This is similar to the proof of the previous theorem; use \/72¢ T~/
in the place of \/7- _, T'/, and Theorem 4.12(vi). O

The following is sometimes useful in showing transformations have zero
entropy. We shall use it later to show a rotation of the unit circle has zero
entropy.

Corollary 4.18.1. If T is an invertible measure-preserving transformation of
the probability space (X,%B,m) and \/2, T s/ =R for some finite sub-
algebra of then h(T) = 0.

Proor. By Theorem 4.18
h(T)=h(T, )

= lim H(ﬂ/\/ T"ﬁ%) by Theorem 4.14.
) i=1
But\/2, T-'d =T 'B=B. Letsd,=\/}-, T'sf. Then o, c sy < -+
and \/;%, &, = B. By Corollary 4.16.1 we have H(&//<,)— 0, so that
nT)=0. 0

Remarks

(1) Entropy can be defined for any countable nartition of (X, 4%, m) as
follows: If £ = {A,,A,, ...} then

H(&) = —} m(A;)logm(4;)

13

(which may be infinite). One can show h(T') = sup h(T, £) where the supremum
is then over all countable partitions & with H(§) < oo.

A countable partition & of X is called a generator for an invertible measure-
preserving transformation T if

{w/ T4 (&) = B.

n= —oo
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As in Theorem 4.16 one can prove that if & is a generator and H(&) < oo
then W(T) = W(T, ).

The basic theorem on existence of generators & with H(£) < oo was given
by Rohlin in 1963.

Let us suppose (X, 4%, m) is a Lebesgue space and T is an invertible
measure-preserving transformation of (X, 4, m). We say that T is aperiodic if

m(|) {xeX:T"(x)=x}) =0.
"%o
Note that if T is ergodic then T is aperiodic unless X differs from a finite
set by a set a measure 0.

Theorem 4.19. (See Rohlin [3].) Suppose (X, 8, m) is a Lebesgue space (which
we assume is not isomorphic to a finite set) and T is an invertible measure-
preserving transformation of (X, 8, m). Then T has a generator & with H(£) < oo
iff h(T) < oo and T is aperiodic.

Thus, if T'isergodicand h(T) < co then T has a generator & with H(&) < oco.
In 1970 Krieger [1] proved:

Theorem 4.20. If (X, 4, m) is a Lebesgue space and T is an ergodic invertible
measure-preserving transformation of (X, 2B, m) with h(T) < oo then T has a
finite generator

E={Ay,..., A}

In fact & may be taken so that "™ < n < "™ + 1.

Hence finite generators exist in the most interesting cases, although they
may be difficult to find.

(2) Another important use of partitions is in relating measure-preserving
transformations to shift mappings. Suppose T is an invertible measure-
preserving transformation of the probability space (X,%,m) and suppose
&={Ay,...,A} is a finite partition of (X, %, m). Let Y denote the product
space {1,2,...,k}? so that each point of Y is a bisequence y = (y,)°,, where
each y, e {1,2,...,k}.Let S: Y — Y be the transformation defined by S(y,) =
(z,) where z, = y, .. In other words S maps the point (...,y_ VoV V2, --)
to (...,Y-1YoV1V2»--.). If we put the discrete topology on {1,2,...,k}
and the product topology on Y then Y is a compact metrisable space and
S is a homeomorphism of Y. We shall study this shift homeomorphism in
Chapter 5. We shall now show that there is a probability measure u on the
g-algebra 2(Y) of Borel subsets of Y which is preserved by S and a measure-
preserving map ¢:(X,%,m) - (Y,%B(Y),u) such that ¢T = S¢p. For xe X
let ¢(x) = (yn)2,, if T"x € A,,. This defines a transformation ¢:X — Y.
Also S¢(x) = ¢(Tx), x € X. To see that ¢ is measurable notice that if for
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Liss -5 ip)e ={y =(ya)|yj=ijs < j <r} then
¢_1(S[is’ . ,ir]") = m T_J
j=s

and the sets of the form (i, . . . ,i,], generate %(Y). Since
{Be B(Y)|¢~'(B) e B}

is a o-algebra we must have ¢ '%(Y) = %4. The measure u on (Y,%(Y))
is defined by u = mo ¢~ !. Clearly ¢ is measure-preserving and from S¢ =
¢T we see S preserves u. (The measure p is not in general a product measure
or a Markov measure.) The map ¢:X — Y can be very far from invertible:
if T is the identity map then ¢(x) is constant on each set 4;. In this example
the map ¢~ ':(#(Y), f) - (%, M) is not onto since only the members of &
corresponding to the sets A4; are in the image of ¢ 1. If we want ¢ to be a
conjugacy (ie. ¢ ":(@(Y), ) — (%,) is onto) then we need \/&_,
T/ (&) = 4, in other words we need & to be a generator. So a generator
for T gives a natural conjugacy between T and the shift homeomorphism on
a product space equipped with some shift invariant probability measure
defined on the Borel subsets of the product space. By Krieger’s theorem
we can suppose that each ergodic invertible measure-preserving transfor-
mation is represented in this way, in this case the Borel measure on the shift
space is an ergodic invariant measure for the shift. (This implies that there
are many different ergodic shift invariant measures on the Borel subsets
of a given product space.) ‘

For non-invertible transformations similar results are true when the
one-sided shift map S(yo,V1,-.-) = (Y1 V2, -..) is used on the one-sided
shift space {1,2,...,k}?". Then one considers one-sided generators
(ie. \/o2o T™ () = B). O

We now prove some more results that are useful for the computation
of entropy.

Theorem 4.21. Let (X, %, m) be a probability space. If B, is a sub-algebra
of # with B(B,) =% then for each measure-preserving transformation
T:X — X we have

h(T) = suph(T, &)

where the supremum is taken over all finite sub-algebras s of %,,.

PROOF. Let ¢ > 0. Let € < 4 be finite. By Theorem 4.16 there exists a finite
< 4%, such that
H(€/92,) <¢
Thus
T, %)< nhT,2,)+ H(¥/2,) by Theorem 4.12(iv)

<WT,9,)+es.
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Therefore h(T,%) < ¢ + sup{h(T,2):2 c B,, 2 finite} and thus h(T) <
sup{i(T,2):2 < B,, 2 finite}. The opposite inequality is obvious. O

When it is difficult to find a generator for a given measure-preserving
transformation the following result is often useful to calculate entropy.

Theorem 4.22. Let (X,28,m) be a probability space and let {</,}{ be finite
sub-algebras of % such that 4y < o, < -and \/;2; A, = B.If T: X > X
is measure-preserving then h(T) = lim,_, , h(T, <Z,).

ProoFr. We note that h(T, 2,) is an increasing sequence by Theorem 4.12(iii).
Also B = | )i~ 1, is an algebra and #(%,) = 4. By Theorem 4.21 h(T) =
sup{h(T, €):€ < B, € finite}. If € = B, is finite then € < <, for some
neo. Thus

h(T,€) < h(T, L,,),

which implies h(T) < lim,_, h(T, %) and hence h(T) = lim,_,  h(T, ).
O

Theorem 4.21 allows us to prove the following formula for the entropy
of a direct product of measure-preserving transformations.

Theorem 4.23. Let (X, B, m,), (X,, B,, m,) be probability spaces and let
T,:X,— X, T,:X, > X, be measure-preserving. Then

h(Ty x T,) = h(T,) + h(T>).
Proor. If ) = B, &, S &4, are finite then &, x &, is finite, where
Uty x sby) = {A; x Ay: Ay € &(oA)), Az € &)}

Let %, denote the algebra of finite unions of measurable rectangles. Then
B(Fo) = B, X B, by definition of B, x %,, and by Theorem 4.21,

h(Ty x Ty) =sup{h(Ty x T,, 6):€ < F,, ¥ finite}.

But if € is finite and ¥ < J, then € < &, x &, for some finite &/; < %;,
&, < B,. Hence, by Theorem 4.12(v),

Ty x Ty)=sup{h(Ty x T,, &y x o,): e, = By, Ay = B,; Ay, A, finite}.
We have

(\_/ (T, x T,) (o, x,%)

()« (1, 75)

= _Z(ml x my)(Cy x D;) - log(my x my)(Cy x D))
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where {C,} are the members of &\/iZ4 T1'o,), and {D;} are the members
of &(\/iZo T3 'st,)

= _Zml(ck)mZ(Dj) : IOg(ml(Ck)mZ(Dj))

= — Y m(Cmy(D)) - [logm,(Cy) + logmy(D;)]
_Zml(ck) ~logm(C,) — ZmZ(Dj) “log mZ(Dj)

n—1 n—1
=H(\/ T;"M1>+H<\/ T{‘d2>.
i=0 i=0

Thus h(Ty x Ty, o, x &,) = h(Ty,s4y) + h(T5,54,) so that h(T;, x T,) =
h(T,) + h(T>). O

Remark. Theorem 4.23 readily extends to the direct product of any finite
number of measure-preserving transformations.

§4.7 Examples

We shall now calculate the entropy of our examples.

(1) IfI:(X, B,m) > (X, B, m) is the identity, then h(I) = 0. This is because
h(I, &) = lim(1/n)H(&/) = 0. Also, if T? = I for some p # 0 then h(T) =
This follows since 0 = h(T?) = |p| - h(T) by Theorem 4.13. In particular any
measure-preserving transformation of a finite space has zero entropy.

(2) Theorem 4.24. Any rotation, T(z) = az, of the unit circle K has zero
entropy.

Case 1: Suppose {a":n € Z} is not dense, i.e., a is a root of unity. Thus
a? =1 for some p # 0; and T?(z) = a’z =z so h(T)= 0 by example (1).

Case 2: Suppose {a":ne Z} is dense in K. Then {a":n < 0} is dense in
K. Let & = {A4,,A,} where A, is the upper half circle [1, — 1), and 4, is the

A,

A,

lower half circle [ —1,1). For n > 0, T™"¢ consists of semi-circles beginning
at a™" and —a™" Since {a™":n > 0} is dense any semi-circle belongs to
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wo T "2(E). Hence any arc belongs to \/;X, T~ "(£). Thus, 4 =
\/o T~ "o/ (&) and so, h(T) = 0 by Corollary 4.18.1.

(3) Theorem 4.25. Any rotation of a compact metric abelian group has
entropy zero.

PRrOOF

(a) Suppose X = K", the n-torus, and T(zy,...,z,) = (a;zy, . - . »AxZ,)-
Then T=T; x T, x --- x T, where T;:K — K is defined by Ty(z) = a;z.
By example (2) h(T;) = O for all i so by Theorem 4.23

WT)= .il W(T) = 0.

(b) General Case. Let T:G — G be T(x) = ax. Let G = {y,7,, . . .LE:t
H,=XKery, n---n Kery,. Then H, is a closed subgroup of G and (G/H,)
is the group generated by {y,,...,7,} (by 6 of §0.7.) Thus

—_ . .
(G/H,) = finite group x Z',
so
G/H,=F, x K'

where F, is a finite group and K’ is a finite-dimensional torus.

The rotation T induces a map T,:G/H,— G/H, by T,(gH,) = agH,. The
map T, is a rotation on G/H,, so that it can be written T, = T, ; x T,
where T, ; is a rotation of F, and T, , is a rotation of K'~. Thus

WT,) = K(T,1) + h(T,2) =0

by example (1) and case (a) of this proof.

Note that \/, &/(G/H,) = %, where &/(G/H,) denotes the g-algebra con-
sisting of those elements of # that are unions of cosets of H,, because y,
is measurable relative to </(G/H,) and so every member of L%(m) is mea-
surable relative to \/, «(G/H,,).

Therefore if 8, = | |2 &(G/H,) then by Theorem 4.21

WT)= sup h(T,%).

C€SBo

€ finite
However, if = %, is finite then ¥ = /(G/H,) for some n and so h(T, %) <
h(T,) = 0. Thus h(T) = 0. a

Corollary 4.25.1. Any ergodic transformation with discrete spectrum has zero
entropy.

This follows from Theorem 3.6. (Actually we have shown the result only
when (X, %, m) has a countable basis since the above calculation was for
a metric group G.)
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(4) Endomorphisms of Compact Groups. If A is an endomorphism of the
n-torus K" onto K" we shall show in Chapter 8 that h(4) = ) log|4;| where
the summation is over all eigenvalues of the matrix [ 4] with absolute value
greater than one.

One can write down a complicated formula for the entropy of an endo-
morphism of a general compact metric abelian group. See Yuzvinskii [1].

(5) Affine Transformations. We shall show in Theorem 3.10 that when
T=a" A is an affine transformation of K" then h(T) = h(A).

(6) Theorem 4.26. The two-sided (po, - - . , P 1)-shift has entropy — ¥Z}
p; - logp;.

ProOF. Let Y = {0,1,...,k— 1}, X =[], Y, and let T be the shift. Let
Ai={{xi}:xo=1i},0<i<k—1 Then ¢ = {Ao,..., A,_,} is a partition
of X. For ease of notation let & denote </(&). By the definition of the product
o-algebra, 4, we have

\/ T =2.

1= — o0

By the Kolmogorov—Sinai Theorem (4.17),

1
h(T) = lim _H(‘%VT_J.MV' ..VT—(n—l)M).

n— oo n

A typical element of &(&/ v T~/ v+ -v T~ ef) is
A, " T 4, - n T~ Dy,

In-1

= {{xn}1x0 =g, X1 = igy -+ s Xyo1 = In—1)
which has measure p; - p;,. ... . p;,_,. Thus,
HAVvT 1o v v T " Uy
= =2Pi " Pipy) log(Pig i)
=- kzl pip o pi, o )logpi, + o+ logp, ]
ro,k-._.l,x,.-,—o
= —n ) pilogp
i k-1
Therefore, h(T) = h(T, /) = — Z p: - logp;. O

i=0

Remark. The 2-sided (,%)-shift has entropy log2; the 2-sided (3,%,4)-shift
has entropy log 3. Thus these transformations cannot be conjugate.

(7) The 1-sided (po, - . . ,px_q)-shift has entropy —>%-!p; logp;. The
proofis very similar to the one in example (6) but Theorem 4.18 is used instead
of Theorem 4.17.
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(8) The following is an example of a transformation with infinite entropy.
Let I = (0,1] with Borel sets and Lebesgue measure. Let X = [ [, I with
product measure and let T be the shift on X. Then h(T) = co.

To see this let
i—1 i .
An,i= {Xj}:T<XOS;,n>0,ISlSn .

Then m(A4,;)=1/n and &, = {A,;,...,A4,,} is a partition of X. Hence
h(T,¢,) =logn by the same argument as used in example (6) (using the
independence of &,, T~ &,,..., T *,). Therefore, h(T) > logn for each n,
and so h(T) = co.

(9) Theorem 4.27. The two-sided (p,P) Markov shift has entropy —Y;;
pipijlogpi;.

Proor. We shall use the notation of example (6). We have Y ¥-J p;p;; = p;.
As in (6) W(T) = lim, ., (1/n)H(\/§~! T~'«). The element A;, N T™'4;, N
- T™0"D 4, has measure p; pii, " Pi,_sin_, SO

k-1
= - Z PigPigiy * " Pip_sin-, 10(DigPigi, Div_sin_y)
iorits v erin_1 =0
= _Zpiopioi. “ Dinesin- 108Dy + lOgpii, + 0+ logpi,_,i._.]
k-1 k-1
= - Z pi,logp;, — (n — 1) Z pipijIngija
i0=0 i,j=0

where we have used the relationships Y 2§ p;p;; = p;and Y %28 p;; = 1. Hence
WT)= =Y, ;pipijlogp;;. O

The same formula holds for the one-sided (p, P) Markov shift.

§4.8 How Good an Invariant is Entropy?

Aninvariant P for an equivalence relation is a complete invariant if whenever
T and S both have the property P then T and S are equivalent.

Entropy is, in general, far from complete for the equivalence relation of
conjugacy on the set of all measure-preserving transformations. The following
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is an example of two ergodic measure-preserving transformations with equal
entropy which are not conjugate.

Let T:K — K be defined by T(z) = az, a € K, where {a"}* is dense in
K, and let S:K — K be defined by S(z) = bz, b € K, where {b"}* is dense in
K. We know T and S are ergodic and h(T') = 0 = h(S) by example (2) of the
previous section. If we choose a, b so that {a"}® # {b"}?, then T and
S are not conjugate (in fact, they are not even spectrally equivalent) by
Theorem 3.4.

The following is an example (due to Anzai) of two ergodic and spectrally
equivalent measure-preserving transformations with equal entropy which
are not conjugate.

Let T:K? — K? and S:K? — K2 be defined by

T(z,w) = (az, z°w) S(z, w) = (az, zw),

where {a"}® . is dense in K and p, g are non-zero integers. Observe that T
and S are affine transformations, T and S are ergodic (see the Remarks after
Theorem 1.11) and h(T) = h(S) = 0 by examples (5) and (4) of §4.7.

For ne Z define ¢,:K*>— K by g,(z,w) = 2z". Then g, T = a"g, and
gn° S = a"g,. By considering the other characters of K* one can readily
show that there are functions { f;:i > 0} such that L?(m) has a basis consisting
of the functions {g,:n € Z} together with {U4f;:j € Z, i > 0}. Similarly there
are functions {h;:i > 0} such that functions {g,|n € Z} together with { Uh;:j €
Z,i>0} form a basis of L*(m). One can then define a unitary operator
W:L*(m) —» L*(m)by W(g,) = g,and W(U%.f,) = Uih, and extending. Clearly
WU = UgW showing T and S are spectrally isomorphic.

However, if p # +¢q, T and S are not conjugate. As mentioned before
(Theorem 2.6) conjugacy and isomorphism coincide for measure-preserving
transformations of K? equipped with Haar measure m. We shall show T and
S are not isomorphic. Suppose ¢pT = S¢ and ¢(z,w) = (f(z, w),g(z,w)). The
maps f and g are only defined almost everywhere but this will not affect our
argument as we shall consider them as members of L?(m). We have f(T) = af
and g(T) = f. Since f is an eigenfunction with eigenvalue a, Theorem 3.1(iii)
implies f(z,w) = c - z for some ¢ € K. The second equation then becomes
g(T(z,w)) = c?2%(z, w). If one now expresses g as a Fourier series, then it is
straightforward to show that g(z, w) = dz"w' where d € K, pt = q for some
te Z and a" = % So ¢(z,w) = (cz,dz"w') is an affine transformation and for
¢ to be an invertible measure-preserving transformation one needs t = +1,
ie,p= tq.

Hence entropy is not a good invariant for the relation of conjugacy on
the class of transformations with zero entropy. It is desirable to find a class
of measure-preserving transformations for which entropy is a good invariant.
It turns out that such a class is provided by transformations that are “the
opposites” of transformations with zero entropy. We consider these transfor-
mations in the next section.
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§4.9 Bernoulli Automorphisms and
Kolmogorov Automorphisms

Definition 4.11. Let (Y, %, 1) be a probability space. Let (X, 8,m) =[[%,
(Y, ,p) and let T: X — X be the shift T({y,}) = {x,} where x, = y,,,ne Z.
Then T is an invertible measure-preserving transformation and is called the
Bernoulli shift with state space (Y, F, p).

EXAMPLES OF BERNOULLI SHIFTS

(1) The two sided (py, - . ., px—y)-shift. Here Y = {0,1,...,k — 1}.

(2) The example (8) of §4.7. Here Y = (0,1].

(3) If T is a Bernoulli shift so is T2. The state space for T2 is (Y x Y,
F X F, uxp.

(4) If T, and T, are Bernoulli shifts so is T, x T,. The state space for
T, x T, is the direct product of the state spaces for T, and T,.

Remark. The method used to calculate the entropy of examples 6 and 8 of
§4.7 can be used to show that if T is a Bernoulli shift then #(T) < oo iff there
exists a countable partition 5 of (Y, #, u) such that H(n) < oo and /() = F.
In this case h(T) = H(F).

In 1958 Kolmogorov asked if entropy is a complete isomorphism invariant
on the collection of all Bernoulli shifts. This was answered in 1969 by Ornstein
(see Ornstein [1]).

Theorem 4.28 (Ornstein). Let T,, T, be Bernoulli shifts whose state spaces
are Lebesgue spaces. If h(T,) = h(T,) then T, is conjugate to T,, and hence
isomorphic by the assumption on the state spaces (a countable direct product of
Lebesgue spaces is a Lebesgue space).

The proof of this deep theorem is presented in Ornstein [ 1], Shields [1],
and Moser et al [1]. Certain special cases had been worked out earlier by
Meshalkin [1] and by Blum and Hanson [1]. This result reduces the con-
jugacy problem for Bernoulli shifts to their state spaces, since the entropy
depends only on the state space. It is possible, for example, for a Bernoulli
shift with a state space of two points to be conjugate to a Bernoulli shift
with a countably infinite state space.

Remark. Since the map (py, ..., p,) » — ) p;logp;, defined on {(py,...,
Pn)|p,- >0 Z’{ p; = 1}, has image (0,logn], for each x > O there is a Bernoulli
shift with entropy x.

Since we are interested in measure-preserving transformations up to
conjugacy we make the following definition.
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Definition 4.12. An invertible measure-preserving transformation of a
Lebesgue space (X, %, m) is called a Bernoulli automorphism if it is conjugate
to a Bernoulli shift.

(The word “automorphism” is used because an invertible measure-
preserving transformation is a bijective structure preserving map of a
measure space.)

The above remarks apply to Bernoulli automorphisms and Ornstein’s
theorem says that two Bernoulli automorphisms with the same entropy are
conjugate. This implies the following.

Corollary 4.28.1

(i) Every Bernoulli automorphism has an n-th root. (S is an n-th root of T
ifS"=T.)

(i) Every Bernoulli automorphism is conjugate to a direct product of two
Bernoulli automorphisms.

(iii) Every Bernoulli automorphism T is conjugate to its inverse.

PRrROOF

(i) Let T be a Bernoulli automorphism and n > 0. Let S be a Bernoulli
automorphism with h(S) = (1/n)h(T). Then S" is a Bernoulli automorphism
with entropy h(T), and therefore S" and T are conjugate.

(i) Let T be a Bernoulli automorphism. Let S be Bernoulli with k(S) =
1. h(T). Then h(S x S) = h(T) and, since S x S is Bernoulli, S x S is conju-
gate to T.

(iiiy T, T~! are Bernoulli automorphisms with the same entropy. O

The following theorem is a summary of results about the structure of the
space of Bernoulli automorphisms, and shows this space is closed under some
natural operations on measure-preserving transformations. The proofs are
given in Ornstein [1]. All the results are due to Ornstein.

Theorem 4.29

(i) Every root of a Bernoulli automorphism is a Bernoulli automorphism.

(ii) Every factor of a Bernoulli automorphism is a Bernoulli automorphism.

(iii) If {Z,}7 is a sequence of sub-c-algebras of # with TF, =%,
FicF,c [P F, =B, and if the factor transformation (see §2.3)
associated with each &, is a Bernoulli automorphism then T is a Bernoulli
automorphism (i.e. an inverse limit of Bernoulli automorphisms is a Bernoulli
automorphism).

Ornstein has given a criterion for a measure-preserving transformation to
be a Bernoulli automorphism. This criterion is used in some of the proofs of
the results in Theorem 4.29 and is also useful when checking if concrete
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examples are Bernoulli automorphisms. At the end of this section we list
some examples of Bernoulli automorphisms and Ornstein’s criterion (or
some variant of it) is the usual method used to show these examples are
Bernoulli automorphisms.

Since a Bernoulli shift is really an independent identically distributed
stochastic process indexed by the integers we can think of a Bernoulli
automorphism as an abstraction of such a stochastic process. In 1958
Kolmogorov introduced the following class of measure-preserving trans-
formations as abstractions of regular, identically distributed stochastic
processes.

Definition 4.13. An invertible measure-preserving transformation T of a
probability space (X, 4, m) is a Kolmogorov automorphism (K-automorphism)
if there exists a sub-g-algebra 4" of # such that:

() & < TA.
(i) \/=o T = 2.
(i) 2o T™"H = N = (X, ¢).

We always assume A # % (since if not the identity is the only measure-
algebra automorphism). Hence " # T#". In fact the space (X,%,m) is
usually taken to be a Lebesgue space.

Theorem 4.30. Every Bernoulli automorphism is a Kolmogorov automorphism.

ProOF. Let the state space for T be (Y, %, p). If FeZ, let F =
{{x,} € X:xoe F} € B. Let ¥ = {F:F e #}, which is called the time-0 o-
algebra. Let #” = \/?- _, T'%. We now verify that /¢ satisfies the conditions
for a Kolmogorov automorphism.

0 1
Wx=\ Tgc \/ T'%=Tx.
i) \/ T \/ \/ T'9=\/ T'9 =42 by definition of Z.
n=0 n= )

(111) We have to show (| T™"# = N = {X,¢}. Fix Ae (& T™"H =
2o \VI% T'%. Let Be \/i2; T*, for some fixed je Z. Since A€ \/;;
T'% A and B are independent, and therefore m(4 N B) = m(A)m(B). The col-
lection of all sets B for which m(4 n B) = m(A)m(B) is a monotone class, and,
by the above, contains | J% _, \/i%; T*%. Therefore VB € B, m(A N B) =
m(A)m(B). Put B = A, then m(A) = m(A)* which implies m(4) = 0 or 1. Hence

N T"H =N O

n=0
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It was an open problem from 1958 to 1969 as to whether the converse of
Theorem 4.30 was true, i.e., whether a Kolmogorov automorphism acting
on a Lebesgue space is a Bernoulli automorphism. This was shown to be false
by Ornstein.

Theorem 4.31 (Ornstein). There is an example of a Kolmogorov automorphism
T which is not a Bernoulli automorphism.

Corollary 4.31.1. Entropy is not a complete invariant for the class of
Kolmogorov automorphisms.

PrOOF. Let T be the example of Ornstein. By Corollary 4.14.4 h(T) > 0.
Choose a Bernoulli automorphism S with h(S) = h(T). S and T are not
isomorphic. 0

The following results show that the class of Kolmogorov automorphisms
does not share all the properties the class of Bernoulli automorphisms enjoys.
The proofs are given in the references cited.

Theorem 4.32

(i) There are uncountably many non-conjugate Kolmogorov automorphisms
with the same entropy (Ornstein and Shields [1]).

(ii) There is a Kolmogorov automorphism T not conjugate to its inverse
T~ (Ornstein and Shields [1]).

(iii) There is a Kolmogorov automorphism which has no n-th roots for any
n > 2 (Clark [1]).

(iv) There are non-conjugate Kolmogorov automorphisms T, S with
T? = $? (Rudolf [1]).

(v) There are two non-conjugate Kolmogorov automorphisms each of
which is a factor of the other (Polit [1] and Rudolf [2]).

Remarks

(1) Statement (ii) of Theorem 4.32 contrasts with the behaviour of ergodic
transformations with pure point spectrum (see Corollary 3.4.1).

(2) Ornstein’s example for Theorem 4.31 is defined by induction and so
is fairly complicated to describe. It is therefore important to check whether
the more “natural” examples of Kolmogorov automorphisms are Bernoulli
automorphisms or not. We consider some of these at the end of this section
and give an (easy to describe) example of a Kolmogorov automorphism that
was recently shown not to be a Bernoulli automorphism.

(3) Sinai has proved that if T is an ergodic invertible measure-preserving
transformation of a Lebesgue space (X, %, m) with h(T) >0 and if S is a
Bernoulli automorphism with h(S) < h(T) then there exists a measure-
preserving transformation ¢ such that ¢ T = S¢, i.e,, S is a factor of T (see
Rohlin [3], p. 45).



§4.9 Bernoulli Automorphisms and Kolmogorov Automorphisms 109

The next theorem shows that all Kolmogorov automorphisms are
spectrally the same.

Theorem 4.33 (Rohlin). If (X, %,m) is a probability space with a countable
basis then any Kolmogorov automorphism T:X — X has countable Lebesgue
spectrum.

Proor. Recall that we are assuming # # {X, ¢} = 4. Wehave (i) ¥ < TX,
(i) \/T"H# = 4, (iii) (\T "4 = A". We split the proof into three parts:

(a) We first show that " has no atoms, i.e., if C € # and m(C) > 0 then
iD € A with D = C and m(D) < m(C).

Suppose C is an atom of A with m(C) > 0. Then TC is an atom of T4
and since A < TA either TC =« C or m(C n TC)=0. If TC = C then
TC = C since both sets have the same measure so that C € (s>, T~ " and
therefore m(C) = 1. Hence 4" = A" so & = A, a contradiction. On the other
hand, suppose m(TC n C) = 0. Then either for some k > 0 T*C & C (and
we use the above proof to get a contradiction) or m(T*C n C) =0 Vk > 0
and then C U TC U T?C v - - - has infinite measure, a contradiction.

(b) Let # = {f e L*m):f is A -measurable}. Then Ur# < #. Let
H =V@UpH. From Up"# = @™, ULV @ UL (n,m > 0) it follows
that L2(m) = @2, UtV @ C where C is the subspace of constants. It
suffices to show V is infinite-dimensional since if { f1, f5, f3, ...} is a basis
for V, then {fo = 1, Uyf;:n e Z, j > 0} is a basis for L*(m).

(c) We now show V is infinite-dimensional. Since T # X (we are
assuming # # A") we know V # {0}. Let ge V, g #0 and then G =
{x:g(x) # 0} satisfies m(G) > 0. Since g is /-measurable we have G e o’
and using (a) we know yg# = {xcf:f € #} is infinite-dimensional. Also
xe =V' @ xcUrH where V' < V so either V' is infinite-dimensional
(and hence V is) or ygU o is infinite-dimensional. In this second case there
is a linearly independent sequence of functions {ysUrf,} where the f, are
bounded functions in #. Then {gUf,} are linearly independent in J#. It
suffices to show these functions are in V. But if f € # then

Uzt Urf) = (9, UT(ffn)) =0
sogUrf,eV. 0O

Corollary 4.33.1 A Kolmogorov automorphism is strong-mixing.
Proor. By Theorem 2.12. O

Kolmogorov automorphisms are connected to entropy theory by the
following result (half of which was proved by Pinsker).

Theorem 4.34 (Rohlin and Sinai, see Rohlin [3]). Let (X, 8, m) be a Lebesgue
space and let T: X — X be an invertible measure-preserving transformation.
Then T is a Kolmogorov automorphism iff h(T, /) > 0 for all finite of # N
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Remarks

(1) One says that T has completely positive entropy when the latter
condition holds. Hence T has completely positive entropy iff it is a
Kolmogorov automorphism.

(2) This shows that K-automorphisms are “the opposites” of transforma-
tions with zero entropy (since h(T, /) = 0 V. in the zero entropy case).

(3) We already know from Corollary 4.14.4 that a Kolmogorov auto-
morphism has positive entropy (since K # TX').

(4) It follows from Theorem 4.34 that if T'is a Kolmogorov automorphism
then so is T~!. We know from Theorem 4.32(ii) that T~ ' need not be a con-
jugate to T.

(5) The results of Rohlin and Sinai (Rohlin [3], page 37) show that T'is a
Kolmogorov automorphism iff whenever .« is a finite sub-algebra of 2 then

2o V&, TPl = A One can see from this how much stronger the
Kolmogorov property is than strong-mixing because Sucheston has shown
that T is strong-mixing iff for every subsequence I" of positive integers and
every finite sub-algebra &/ of # there exists a subsequence {b;} of I' with

oy VR, T = 4.

(6) There is another result that shows the Kolmogorov property is a
uniform strong-mixing condition. Let T be an invertible measure-preserving
transformation of a Lebesgue space (X,%,m). For Be 4 and k >0 let
%(B, k) denote the smallest o-algebra containing all the sets T~ "B for n > k.
Then T is a Kolmogorov automorphism iff for all A, Be 4

lim sup |m(4 N C)— m(A)m(C)|=0.

k— oo CeAB(B,k)

In the following examples the word “automorphism” is used in two senses.
When we say “group automorphism of a compact group” we mean auto-
morphism in the sense of topological groups, whereas in the terminology
“Kolmogorov automorphism” the word automorphism refers to an invertible
structure preserving map of a probability space.

Examples

(1) Group Automorphisms. Rohlin proved that any ergodic automorphism
of a compact abelian metric group is a Kolmogorov automorphism [4] and
later Yusinskii proved the theorem in the non-abelian case. [2]. Katznelson
[1] has shown that ergodic automorphisms of finite-dimensional tori are
Bernoulli automorphisms. Lind [1] and Miles and Thomas [1] have proved,
using different methods that any ergodic automorphism of a compact metric
group is a Bernoulli automorphism.

(2) Markov Shifts. Let T be the two-sided (p, P) Markov-shift. We have
seen that T is ergodic iff P is irreducible (i.e., V pairs of states i, j 3n > 0 with
p{ > 0) and T is strong mixing iff P is irreducible and aperiodic (i.e., IN > 0

with p{}? > 0 for all states i, j). Friedman and Ornstein [ 1] have shown that
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such a Markov shift is a Bernoulli automorphism. Therefore from the point
of view of ergodic theory, mixing Markov chains are the same as Bernoulli
automorphisms. One can easily deduce that an ergodic Markov shift is the
direct product of a Bernoulli automorphism and a rotation on a finite group.

The proof of Friedman and Ornstein consists of showing that a trans-
formation with a certain property is isomorphic to a Bernoulli shift. This is a
generalisation of the deep result of Ornstein (Theorem 4.28). It is however
easy to show that the (p, P) Markov shift is a Kolmogorov automorphism iff
P is aperiodic and irreducible. This generalises Theorem 4.30.

Theorem 4.35. The two-sided (p,P) Markov shift is a Kolmogorov auto-
morphism iff P is irreducible and aperiodic.

ProoF. Let T denote the two sided (p, P) Markov shift and let (X, 4, m) be
the space on which it acts. If T is a Kolmogorov automorphism then T is
strong-mixing (Corollary 4.33.1) and therefore P is irreducible and aperiodic
(Theorem 1.27). Now suppose P is irreducible and aperiodic. Let & =
{Ag,Ay, ..., A1} be the natural partition into states at time zero i.e.
A; = {{x,} 2 € X|xo = i}. Let X be the smallest g-algebra containing all
sets in the partitions T7"¢, n > 0.ie. A = \/2o T™ "&/(é) Then X < TA
and \/{2o T"A = & so it remains to show (|2, T~" A = {¢, X}. We shall
do this by generalising the argument used in the proof of Theorem 4.30.
Recall from Theorem 1.27 that since P is irreducible and aperiodic we
have lim,., p{y = p; for all states i, j. Suppose 4 is a cylinder block

alios - - - sir]a+rand Bis acylinder block [ jo, - - - »JsJp+s With b + s < a. Then
(@a—b-—3s)

m(A N B) = PjoPjojr pls 1isPisio Dioiy * " Diyp_ i, so that

p(a b—s) p(a b—s)
m(A)m(B ) min (-LL———> <m(AnB)< m(A)m( ) max <U7>
iJj pj i,j pj

The same inequality is true if A € \/2Z} T~ "«/(¢) and B e \/5%5 T~ "(%).
Fix Be \/}Z; T~ "/(¢) and fix N > b + s. Consider the collection .# of all
measurable sets 4 with

p(a b—s) p(a b—s)
m(A)m(B) inf < . > < m(4 n B) < m(A)m(B) sup( Up >
ij i) iJ J
a>N a>N

The collection .# is a monotone class and contains the algebra

o atr

U UV 1

a=Nr=0n=a
and hence contains the o-algebra \/;Zy T™"/(&) = T~ VA" Let ¢ >0 be
given and choose t, so that t > ¢, implies

t
)

Pj

—1l<e
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for all i, j. Then if Be\/5%5 T~ "o(£) we have [m(A N B) — m(A)m(B)| < ¢
whenever A€ TV and N is large. In particular this is true for
Ae (=0 T™VA .Nowfix A € (\¥-o T~V and consider the collection £
of all measurable sets B with [m(4 N B) — m(A)m(B)| < ¢. The collection £
is a monotone class and contains \/”“ T "/ (&) for all b and all s> 0.
Therefore # = # so that |m(4 N B) — m(A)m(B)| < ¢ for all Be # and all
Ae (V2o T™"A#. We then get m(A N B) = m(A)m(B) for all Be # and
all 4 e ﬂ,, o T7"A, so by putting B = A we have m(4) = 0 or 1 whenever
Ae (Lo T"A. O

(3) One can generalize the notion of a finite-dimensional torus to obtain
another kind of homogeneous space called a nilmanifold. Let N be a con-
nected, simple connected, nilpotent Lie group and D a discrete subgroup of
N so that the quotient space N/D is compact. N/D is called a nilmanifold.
When N = R" and D = Z" we get an n-torus. The Haar measure on N deter-
mines a normalized Borel measure on N/D. If A:N — N is a (continuous)
automorphism with 4D = D then this induces a map 4:N/D — N/D, which
is called an automorphism of N/D. The automorphism A always preserves
the measure m. Parry has investigated the ergodic theory of such maps and
has shown that if A is ergodic then A is a K-automorphism. A subclass of
the ergodic automorphisms of N/D are known to be Bernoulli automorphisms
(see Marcuard [1]).

The simplest examples are as follows: Let

1 x z
N=<[0 1 y|: x,y,2€ R .
0 0 1

N satisfies the above conditions with the operation of matrix multiplication
and the natural topology from R3. Let

1 m p
D=<10 1 n| mnpelsy.
0 0 1

Then N/D is a nilmanifold. The automorphism

2
z 1 2x+y z+x2+y+y?
y—}
] 0 1 x4y
0 0 1

of N induces an ergodic automorphism of N/D.
(4) The following is an example of a Kolmogorov automorphism that is
not a Bernoulli automorphism. The proof of this is due to S. Kalikow [1].
Let T: X — X denote the two-sided (3, 3)-shift. We shall define a transfor-
mation of the direct product measure space X x X.Ifx = (x,)%, ¥ = (¥n) 0>

1
0
0

O = X
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where x,, y € {0, 1}, put S(x, y) = (Tx, T*y) where ¢(x) = —1 if x, = 0 and
g(x) = 1ifx, = 1. Then S is a Kolmogorov automorphism but not a Bernoulli
automorphism.

§4.10 The Pinsker g-Algebra of
a Measure-Preserving Transformation

Let T be a measure-preserving transformation of a Lebesgue space. Let
P(T)=\/{~: o =B, ofinite, h(T,)=0}.

This is called the Pinsker a-algebra of T.

One can show that T~'2(T) = 2(T). One can also prove that if .o/ is
finite then A =« 2(T) iff h(T,«/) = 0. Thus Z(T) is the maximum o-algebra
such that T restricted to (X, 9(T),m|g,m) has zero entropy. Note that
PT)=RBiffh(T)=0and #(T) = A iff T is a Kolmogorov automorphism
(by Theorem 4.34). See Rohlin [1] or Parry [2] for a full account of these
results.

Theorem 4.36 (Rohlin). If T is an invertible measure-preserving transforma-
tion of a Lebesgue space with h(T) > 0 then Uy has countable Lebesgue
spectrum in the orthogonal complement of L*(#(T)) in L*(%).

This reduces the study of the spectrum of invertible measure-preserving
transformations to those with zero entropy.

The types of spectrum that occur for zero entropy transformations are
unknown. There are examples of zero entropy transformations with count-
able Lebesgue spectrum (from Gaussian processes and horocycle flows).

Another important result is

Theorem 4.37. Let T: X — X be an invertible measure-preserving transforma-
tion of a Lebesgue space (X, 2B, m). Suppose F is a sub-c-algebra of % with
TF = % and such that T has completely positive entropy on (X, #,m) (i.e.,
if o is finite o # N and of = F then T, L) > 0). Then ¥ and P(T) are
independent i.e. if Fe % and A € P(T) then m(F N A) = m(F)m(A).

For a proof see Parry ([2], Chapter 6).

Because of this theorem Pinsker conjectured that any ergodic measure-
preserving transformation could be written as a direct product of one with
zero entropy and one with completely positive entropy. However, Theorem
4.32(ii) shows this conjecture is false because if T:X — X is the example of
Ornstein with no square root then the transformation S of the direct product
measure space {0,1} x X (where the measure on {0,1} gives measure 3 to
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each point) defined by S(0,x) = (1,x), S(1,x) = (0, Tx) provides a counter-
example to the Pinsker conjecture. (It is not difficult to show that 2(S)
consists of the four sets ¢, {0} x X, {1} x X, {0,1} x X, and then one shows
that if there is a sub-g-algebra ¢ with S% = ¢ and ¢ being an independent
complement for 2(S) then T must have a square root.) This example is not
strong-mixing (since S? is not ergodic) but Ornstein has also constructed a
strong mixing transformation that violates Pinsker’s conjecture.

§4.11 Sequence Entropy

Let (X,%,m) be a probability space and let T:X — X be an invertible
measure-preserving transformation. Let I' = {¢,¢,,... } be a sequence of
integers. Let .« be a finite sub-algebra of 4. Define

1
hp(T, /) = lim sup ;H(T"dv- cov Tinef)
and define
hpe(T) = sup hp(T, ).
& finite
It is easily shown that hp(T) is a conjugacy invariant for each I'. Entropy
and spectral properties are connected by the following:

Theorem 4.38 (Kushnirenko [1]). Let T be an ergodic measure-preserving
transformation. Then T has discrete spectrum iff hy(T) =0 for every sequenceI'.

One can also show that if T is ergodic either sup;h(T) = oo or logk,
for some positive integer. Moreover, those T with supphp(T) = logk are
those ergodic measure-preserving transformations for which there exists an
ergodic measure-preserving transformation S with discrete spectrum and a
measure-preserving transformation ¢ with ¢T = S¢ and for almost all y
the set ¢ ~(y) consists of k points.

D. Newton has given a formula of the form hp(T) = a(I')h(T') except in
the cases when T has zero entropy and I' has large gaps (i.e. a(I') = o0)
(Krug and Newton [1]). The number a(I') depends only on the sequence I'
and not on T. Therefore only when h(T) = 0 can sequence entropy provide
new conjugacy invariants. Kushnirenko used it to find two non-conjugate
measure-preserving transformations with zero entropy and countable
Lebesgue spectrum. In fact he showed that if T is the time-one map of the
horocycle flow on a two dimensional manifold of constant negative curvature
then T'and T x T have different values of sequence entropy for the sequence
r={2"nx>1}

P. Hulse [1] has given some information on which sequences I' give
hr(T) > 0 when T has quasi-discrete spectrum.
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One can also formulate the mixing concepts in terms of sequence entropy.
The following is due to A. Saleski [1].

Theorem 4.39. Let T be an invertible measure-preserving transformation of
the Lebesgue space (X, %, m). Then

(i) T is weak-mixing iff supy hp(T, /) = H(<Z) for all finite sub-algebras
o of B, where the supremum is taken over all subsequences.

(i) T is strong-mixing iff for every increasing I' of positive integers and
every finite sub-algebra o/ of B we have sup{h,(T, &):A c I'} = H().

§4.12 Non-invertible Transformations

Suppose (X, %, m) is a probability space and T: X — X is measure-preserving.
We have #o T '#>T 2% >---. We know that if =T % (ie.
% = T~ '98) then T~! is an automorphism of the measure algebra (%, i)
and hence T is invertible mod 0 if (X, 8, m) is a Lebesgue space or if X is a
complete separable metric space and 4 is its g-algebra of Borel subsets. Let
B,=(\2oT "#A. Then T 'B_ =B, and B, is the largest o-algebra
with this property One can show that U r has one-sided countable Lebesgue
spectrum on the subspace LX(X, %, m) © LX(X, #.,,m) (i.e. there is an ortho-
normal basis for this subspace of the form {U%fi:n >0,k > 1}). It is
essentially the same as the proof of Theorem 4.33 since one only has to show
L*(X,#,m)© LXX, T~ '%,m) is infinite dimensional.) This reduces the
study of spectral properties of measure-preserving transformations to that
of invertible ones and hence, by Theorem 4.36, to those of zero entropy.
We have 2(T) & 4, because if o/ is a finite sub-algebra of 4 with
(T o) =0 then o &\/2, T '/ (by Corollary 4.14.1) and hence o/ &
oV, T i (n=1)sood &B,.
The analogous concept to a Kolmogorov automorphism is an exact
endomorphism. It is the abstraction of a regular identically distributed
stochastic process indexed by the non-negative integers.

Definition 4.14. A measure-preserving transformation T, of the probability
space (X, %, m), is an exact endomorphism if

NT BN, ie, By N
=0

So exact endomorphisms are as far from being invertible as possible.
Examples of exact endomorphisms are the one-sided Bernoulli shifts. Exact
endomorphisms have one-sided countable Lebesgue spectrum and hence
are strong-mixing (by a proof like that of Theorem 2.12).
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It was conjectured that every ergodic measure-preserving transformation
is a product of an exact endomorphism and an invertible measure-preserving
transformation. This is not so (Parry and Walters [1], Walters [1]).

Also, one-sided Bernoulli shifts with the same entropy are not necessarily
conjugate since an m-to-1 map cannot be conjugate to an n-to-1 map if
m # n. So entropy is far from complete for one-sided Bernoulli shifts. In fact,
the one-sided (po, - . . , Px_ 1)-shift is conjugate to the one-sided (qo, - - . , g;— 1)
shift iff k = l and (py, . . ., px—1) 1S @ permutation of (g, . - . , ¢, 1). (We have
assumed that no p; or g; is zero, which is no loss of generality since the
(Pos - - - » Px—1)-shift is conjugate to the (0, py, . .., px_1)-shift) (Parry and
Walters [1], Walters [1]). The proof of this uses an invariant which is not
present in the invertible case, namely the Jacobian which was introduced
by Parry [2].

Another invariant of conjugacy for non-invertible transformations is the
decreasing sequence of o-algebras {T~"%},> ,. However the three invariants
of entropy, Jacobian and the sequence {T~"%},;%, are not complete for the
relation of conjugacy on the class of exact endomorphisms because there
are two exact endomorphisms S, T with S"@=T""# n>0, $*=T?
(= h(S) = h(T)), S and T having equal Jacobians but with S and T not
conjugate.

Also a one-sided Markov chain which is exact need not be conjugate to
a one-sided Bernoulli shift (Parry and Walters [1]).

§4.13 Comments

Entropy was introduced as a conjugacy invariant for measure-preserving
transformations. It was soon realized that entropy theory was more than
just an assignment of a number to each transformation. Kolmogorov
automorphisms and transformations with zero entropy have received the
most treatment. They are “opposites” from the point of view of entropy.
Kolmogorov automorphisms are important for applications as it seems that
the most interesting smooth systems are Kolmogorov and even Bernoulli.

By Theorem 4.36 we know that the spectral theory of invertible measure-
preserving transformations reduces to that for the zero entropy case. The
following is still an open problem: If h(T) = 0 what kind of spectrum can
Ur have?

For transformations with zero entropy the isomorphism problem is only
solved for ergodic transformations with discrete spectrum, totally ergodic
transformations with quasi-discrete spectrum and some other special cases.
Sequence entropy may play a role in the isomorphism problem for zero
entropy transformations.

In the weak topology on the set of all invertible measure-preserving
transformations on a given space (X, %, m), the set of transformations with
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zero entropy is a dense G, (countable intersection of open sets) (Rohlin [5]).
Since the set of weak mixing transformations is also a dense G; and the set
of strong mixing transformations is a set of first category it follows that
“most” transformations are weak mixing, have zero entropy, but are not
strong mixing. However the ones of interest for applications are often not
in this class.

The main problem to consider for Kolmogorov automorphisms seems
to be to find more examples of Kolmogorov automorphisms that are not
Bernoulli automorphisms. One should first check whether the usual ways
of constructing new transformations from old ones transform a Bernoulli
automorphism to a Bernoulli automorphism (e.g., is a weak mixing group
extension of a Bernoulli automorphism a Bernoulli automorphism?). Several
results in this direction are known. If one of these constructions leads to a
Kolmogorov automorphism which is not a Bernoulli automorphism then
this may lead to a new invariant that may be complete for Kolmogorov
automorphisms.



CHAPTER 5
Topological Dynamics

In measure theoretic ergodic theory one studies the asymptotic properties
of measure-preserving transformations. In topological dynamics one studies
the asymptotic properties of continuous maps. We shall study continuous
transformations of compact metric spaces. The compactness assumption is
a “finiteness” assumption which is similar to the assumption of a finite
measure in the measure-theoretic work. The assumption of metrisability is
not needed for some of the results but it often shortens proofs and most
applications are for metric spaces. The notations we shall use are given in
§0.10.

If X is compact metric and T:X — X is continuous one has an induced
map Uzr:C(X) - C(X) given by Urf = f o T. The map Uy is clearly linear
and multiplicative (i.e. Ur(f - g) = (Urf)(Urg)). If T maps X onto X then
Uy is an isometry and if T is a homeomorphism then Uy is an isometric
automorphism in the sense of Banach algebras (i.e. a multiplicative linear
isometry of C(X) onto C(X)).

In the first section we give a list of examples and in subsequent sections
we discuss dynamical properties. We shall connect these properties with
measures in Chapter 6, when we study the family of invariant probability
measures for a given continuous transformation.

§5.1 Examples

(1) The identity, I, on any X.
(2) A rotation Tx = ax on a compact metric group (recall from §0.6 that
such a group has a rotation invariant metric).

118
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(3) A surjective endomorphism of a compact metric group; in particular,
of a torus.

(4) An affine transformation Tx = a - A(x) where A is a surjective endo-
morphism of a compact group G and a € G. This example includes examples
2 and 3.

(5) Let Y ={0,1,..., k — 1} with the discrete topology. Let X = [[*, Y
with the product topology. A neighbourhood basis of a point {x,} consists
of thesets Uy = {{y,}|y» = x, for |n| < N}, N > 1. A metric on X is given by

29

i = 3 Frpl

n=—

The two-sided shift T, defined by T{x,} = {y,} with y, =x,,, is a ho-
meomorphism of X. We sometimes write this T(..., x_;XoXy,...) =
(...,X_1XoX1X5, . ..) where the symbol * occurs over the 0-th coordinate
of each point. Note that here we have a special case of (iii) since X is a compact
group under the operation

{xa} + {ya} = {(x, + y) mod(k)},

and T is an automorphism of X.

(6) There is a one-sided shift map corresponding to the two-sided shift
in (5). H Y is as in example (5) then let X =[] Y be equipped with the
product topology. The one-sided shift T:X — X is defined by T{x,} = {y,}
where y, = X, 1€, T(xg, X1, X5, ...)) = (X1, X5, ..). The one-sided shift is
a continuous transformation. The preimage under T of any point consists
of k points.

(If we replaced the special space Y by any compact metric space then we
can clearly define the two-sided and one-sided shift maps with “state space”
Y)

If one has a continuous map T:X — X of a compact space and a closed
subset Y of X with TY = Y then T|y is a continuous map of the compact
space Y. The map Ty is sometimes called a subsystem of T. There are many
interesting subsystems of the shift maps of example (5). The following is one
of them and is the topological analogue of a Markov chain.

(7) Let T: X — X be the two-sided shift as in example 5. Let 4 = (a;)¥ ;L0
be a k x k matrix with a;; € {0,1} for all i, j. Let X 4 = {(x,)® 0| Gpens, = 1
Vne Z}. In other words X, consists of all the bisequences (x,)®,, whose
neighbouring pairs are allowed by the matrix 4. The complement of X ,
is clearly open so X, is a closed subset of X. Also TX , = X, so that T|x,
is a homeomorphism of X , and is called the two-sided topological Markov
chain (or subshift of finite type) determined by the matrix 4. For simplicity
we shall write T: X , — X , rather than T|x . If (a;) = 1 all i, j then X , = X.
If A = I, the identity matrix, then X, consists of only k points. Sometimes
X 4 is empty; for example when 4 = ({ 9) and X = [[*,, {0,1}. Two matrices
can define the same topological Markov chain; for example 4, = (J 1),
A, =9 when X =[]*,{0,1}.
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Topological Markov chains are very important as a source of examples
and as models for important diffeomorphisms [see Bowen [2]]. One can
also define one-sided topological Markov chains using example 6 rather
than 5.

(8) This example is one of the simplest used in the qualitative study of
diffeomorphisms of compact manifolds. It is called the north-south map.
Consider the unit circle K and suppose it is positioned so that it is tangent
to the real line, R, at 0 € R. Consider the map x » x/2on R andlet T:K —» K

S \

be the map derived from this using stereographic projection. In other words
T(N) = N, T(S) = S and if 6 € (—n/2, /2) is the angle shown in the diagram
then T maps the point of K cutting the line with angle 0 to the point of K
cutting the line with angle tan™!(tan(6)/2)). So if x ¢ {N, S} then T(x) is
closer to S than x was and T"(x) » S as n — 00. Also T7"x > N as n > ©
if x # S.

§5.2 Minimality

In this section X will denote a compact metric space and T:X — X a ho-
meomorphism. We shall study homeomorphisms in this section and later
we will consider continuous transformations. We would like to find a concept
of “irreducibility” to play the role ergodicity played for measure-preserving
transformations.

Definition 5.1. A homeomorphism T:X — X is minimal if Vx € X the set
{T"x :ne Z} is dense in X. The set 07(x) = {T"x:n € Z} is called the T-orbit

of x.

Theorem 5.1. The following are equivalent for a homeomorphism T:X — X
of a compact metric space.
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(i) T is minimal.
(i) The only closed subsets E of X with TE = E are J and X.
(iii) For every non-empty open subset U of X we have | )2, T"U = X.

ProOOF

(i) = (ii). Suppose T is minimal and let E be closed, E # & and TE = E.
If x € E then 0(x) « E so X = 0r(x) < E. Hence X = E.

(i) = (i) If U is non-empty and open then E = X\ ), T"U is closed
and TE = E. Since E # X we have E = .

(iii) = (i). Let x € X and let U be any non-empty open subset of X. By
(iil) x e T"U for some n € Z so T~ "x € U and 07(x) is dense in X. O

A subset E of X is called T-invariant if TE = E. If E is closed and T-
invariant then T|g is a homeomorphism of the compact metric space E.

Definition 5.2. Let T: X — X be a homeomorphism. A closed subset E of X
which is T-invariant is called a minimal set with respect to T if T| is minimal.

Theorem 5.2. Any homeomorphism T:X — X has a minimal set.

Proor. Let & denote the collection of all closed non-empty T-invariant
subsets of X. Clearly & # J since X belongs to &. The set & is a partially
ordered set under inclusion. Every linearly ordered subset of & has a least
element (the intersection of the elements of the chain. The least element is
non-empty by Cantor’s intersection property.) Thus, by Zorn’s lemma, &
has a minimum element. This element is a minimal set for T. O

Remark. Ergodicity has the properties:

(i) An ergodic transformation is “indecomposable” in the sense that it
cannot be decomposed into two transformations (see §1.5).

(ii) Every measure-preserving transformation on a decent measure space
can be decomposed into ergodic pieces in a nice way.

By its definition, a minimal transformation is “indecomposable”. We
know that each homeomorphism T:X — X has a minimal set. However,
in general, one cannot partition X into T-invariant closed sets E, such that
X =JoEp TE,= ENo, and T|g, is minimal (although we can in some
important cases). If T has such a decomposition it is sometimes called semi-
simple. An example of a transformation not admitting such a decomposition
is an ergodic automorphism of a compact metric group. This is because there
are some points x with 07(x) dense and some points where O7(x) is not dense.
We shall see this in §5.4.

As one might expect a minimal transformation can have no invariant
non-constant continuous functions.
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Theorem 5.3. If T:X — X is minimal homeomorphism and f € C(X) then
f o T = fimplies f is a constant.

PROOF. Since f o T'= f we have f o T" = f Vn € Z, so if we pick some x € X
we know f is constant on the dense set 0,(x). Since f is continuous it must
be constant. O

Remark. It is clear from the above proof that the conclusion of the theorem
is true if there is some point with a dense orbit (rather than all points having
a dense orbit), so the conclusion of Theorem 5.3 does not characterise
minimality.

Since a minimal transformation cannot have non-trivial closed invariant
sets it will not have any finite invariant sets unless X is finite. The points
of finite invariant sets are called periodic points:

Definition 5.3. If T:X — X is a homeomorphism then x is a periodic point
of T if T"x = x for some n > 1. The smallest such n is the period of x. A
periodic point of period one is called a fixed point.

As we mentioned above, if X is infinite no minimal homeomorphism of
X can have any periodic points. However we shall see that there are homeo-
morphisms of X with a dense set of periodic points and with {x € X |04(x) is
dense} also being dense. An ergodic automorphlsm of a finite-dimensional
torus will have this property.

We now check whether the examples mentioned in §5.1 are minimal
or not.

(1) The identity map of X is minimal iff X consists of a single point.

(2) Theorem 5.4. Let G be a compact metric group and T(x) = ax. Then T
is minimal iff {a":n € Z} is dense in X.

PROOF. Let e denote the identity element of G. Since Or(e) = {a":n € Z}, the
minimality of T implies {a":n € Z} is dense. Now suppose the powers of a
are dense. Let x € X. We must show that O;(x) = X. Let y € X. There exists
n; such that a™ — yx~ !, so that

T(x) =a"% - x—y.
Therefore, 04(x) is dense in X. O

(3) An automorphism A of a compact metric group G is minimal iff

= {e}. This is because A(e) = e.

(4) For affine transformations of compact metric groups necessary and
sufficient conditions for minimality are known. For example, if G is also
abelian and connected then T = a - 4 is minimal iff

6 B"G ={e} and [a,BG]=G
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where B is the endomorphism of G defined by B(x) = x ™! - A(x) and [a, BG]
denotes the smallest closed subgroup of G containing a and BG. This was
proved by Hoare and Parry [1].
(5) The shift on k symbols is minimal iff k = 0. This is seen from (3) above.
(6) The north—-south map of K is not minimal because the orbit of the
point N is not dense.

§5.3 The Non-wandering Set

One basic difference between an ergodic rotation of K and the north-south
map of K is that the points of K have a recurrence property for ergodic
rotations (if x € K then points in the orbit of x come very close to x, since
the orbit is dense) whereas the points of K, except for N and S, do not have
a recurrence property for the north-south map (if x # N then T"(x) — S).
This difference motivates the definitions of this section.

Definition 5.4. Let T:X — X be a continuous transformation of a compact
metric space and let x € X. The w-limit set of x consists of all the limit points
of {T"x|n >0} ie. w(x) = {y € X|3n; » oo with T"(x) > y}.

Theorem 5.5. Let T:X — X be a continuous transformation of a compact
metric space and x € X. Then

(i) w(x) # .
(i) w(x)is a closed subset of X.
(ili) Tw(x) = w(x).

PROOF. (i) is clear.

(ii) Let y, € w(x) for k > 1 and y, — y € X. We want to show y € w(x). For
each j > 1 choose k; with d(yy,, y) < 3;. Now choose n; with d(T"x, y, ) < %;
and so that n; < n;,, for all j. Then d(T™x, y) < 1/j so y € w(x).

(iii) It is clear that T'w(x) = w(x). Let y € w(x) and suppose T"x — y. Then
{T™~'(x)} has a convergent subsequence so T";~!(x) — z for some z € X.
Then T"i(x) —» T(z) so that T(z) = y. Since z € w(x) we have Tw(x) = w(x).

O

Remarks

(1) If T is not a homeomorphism then T~ !w(x) can be larger than w(x).
We can see this for the one-sided shift by choosing x to be the point {x,}*
with x, = 0 for all n. Then w(x) = x but T~ !x has k points.

(2) If T is a homeomorphism then we can define the w-limit sets for 7!
and these are called the a-limit for sets for T. Hence a(x) = {ze X |Eln,~ 7
with T~ "i(x) > z}.
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(3) If T is a homeomorphism and E is a minimal set for T then w(x) = E
for all x € E, by Theorem 5.5.

Definition 5.5. Let T: X — X be continuous. A point x is called wandering for
T if there is an open neighbourhood U of x such that the sets T™"U, n > 0,
are mutually disjoint. The non-wandering set for T, Q(T), consists of all the
points that are not wandering for T, hence

Q(T) = {x € X|for every neighbourhood U of x 3n > 1
with T™"U n U # &}

Remarks

(1) The set Q(T) consists of those points with a weak recurrence property.
The interesting action of T takes place in Q(T). We shall see later that any
probability measure on the Borel subsets of X which is preserved by T gives
zero measure to X\Q(T).

(2) If T is a homeomorphism then T7"U n U =T"%U n T"U) so
Q(T™ ') = Q(T) and (T) = {x € X|for every neighbourhood U of x 3n # 0
with T7"U n U # ¢}.

Theorem 5.6. Let T: X — X be continuous. Then

(i) Q(T) is closed.
(i) (Jxex @(x) = Q(T) (in particular QT) # &).
(iii) All periodic points belong to Q(T).
(iv) TQ(T) < Q(T), and if T is a homeomorphism then TQ(T) = Q(T).

PrOOF

(i) From the definition of Q(T) it is clear that X\Q(T) is open.

(i) Let x € X and y € w(x). We want to show y € Q(T). Let V be a neigh-
bourhood of y. We want to findn > 1 with T™"V n V # F;so weseekn > 1
and some z € V with T"z € V. We know T"(x) — y for some subsequence {n;}
of the natural numbers so choose n;, < n; with T"o(x) e V and T"1(x) e V.
Then take n = n; — n; and z = T"o(x).

(iii) If T"x = x,n > 0,and U is a neighbourhood of x thenx e T™"U n U.

(iv) Let x € Q(T) and let V be a neighbourhood of T(x). Then T~ 'V is a
neighbourhood of x so there is some n > 0 with T-®"*Vy A TV # (.
Therefore T™"V NV # & so T(x) € Q(T).

If T is a homeomorphism we know Q(T)= Q(T"!) and therefore
T~1Q(T) = (T). 0

Remark. If E is a minimal set for T then E = Q(T) because if U is open,
{T"U|ne Z} are pairwise disjoint, and U N E # & then E < Uz T"U
and this contradicts compactness.
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Another way to state the definition of Q(T') is given in the following.

Theorem 5.7. If T:X — X is a continuous transformation of a compact metric
space then Q(T) = {x € X | for every neighbourhood U of x and every N > 1
there exists n > N with T""U n U # }.

Proor. Clearly the stated set is a subset of Q(T'). Suppose x € Q(T) and U is
aneighbourhood of xand N > 1. If x is a periodic point then clearly T™"U n
U # J for some n > N. Suppose x is not a periodic point. Choose > 0 so
that B(x;r) = U. We now show we can choose 6 < r so that B(x; ) n
T B(x;0) = foralll <i< N — 1.Ifno such § exists then if 1/n < r there
exists x, € B(x; 1/n) n T~"B(x; 1/n) for some 1 < i, < N — 1. Choose a sub-
sequence of natural numbers {n;} such that i, is independent of j, say i, = k
forallj. Then x, € B(x;1/n;)so0 x,, — x,and T'{(x ;)€ B(x;1/n;)s0 T*(x, )—>x
Since T¥(x, ) converges to both T"(x) and x we must have T"(x) — X contra-
dicting the fact that x is not a periodic point. Therefore there exists é < r
with B(x; 6) n T7'B(x; 8) = @ if 1 <i < N — 1. However x € (T) so there
is some n; > 1 with B(x; 6) n T"™B(x, ) # & and hence n; > N. Therefore
UnT"U# . 0O

If T:X — X is a homeomorphism then T, is a homeomorphism of the
compact set Q(T) and we can consider its non-wandering set Q(T)q,7,) which
we shall denote by Q,(T). The following is an example where Q,(T) # Q(T).

Let X be the closed unit disc in the plane represented in polar coordinates,
so that X = {(r,2n60)|0 < r < 1, 0 € [0, 1)}. Define T:X — X by T(r,2n0) =
(r''?,2n(6* + 1 — r) mod 2n). Then T is a homeomorphism which fixes the
origin. On the boundary, 0X, of X, T is the homeomorphism 270 — 2r6? of
the unit circle and hence has one fixed point at § = 0 and the other points move
clockwise around the circle towards § = 0. Hence Q(T|,x) consists of the
point (1,0). All other points of the disc spiral out towards 0X under action
of T. We claim Q(T) = {(0,0)} v 0X. If (r,2n0) ¢ {(0,0)} U X then it is
wandering. Clearly (0,0) € Q(T). Now let (1,276) € 0X, and let U be a con-
nected neighbourhood of (1,276) (say, an intersection of an open ball in
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R? with X). Then T"U will also be a connected set, and for large n will
have the shape shown in the diagram. Hence T"U n U # & and hence
Q(T) = {(0,0)} U 0X. Hence Q,(T) = {(0,0) U (1,0)} so Q,(T) # Q(T).

If we put Q,(T) = Q(T) and define 2,(T) as above then we can define
Q(T) inductively by Q(T) = Q(T|Q"_1(T)). So Q(T) > Q)(T)>---is a
decreasing sequence of closed subsets of X and the intersection ()2, Q,(T)
is denoted by Q (T') and called the centre of T.

In §6.4 we shall state formally the connections between Q(T) and prob-
ability measures on the Borel subsets of X which are invariant for T. We
shall mention these results briefly now because they help to determine Q(T')
from knowledge of invariant measures. If u is a probability measure on the
Borel subsets of X and is invariant for T'and if u(U) > 0 whenever U is a non-
empty open set, then Q(T) = X. (This is part of Theorem 6.15 and the proof
is easy because if x ¢ Q(T) there is an open set U with the sets {T™"U}%,
pairwise disjoint and this cannot happen when p(U) > 0). Because of this any
affine transformation T of a compact group G has Q(T) = G because T
preserves Haar measure which is strictly positive on non-empty open sets.

Consider now the north-south map of K. For this map Q(T) = {N, S}.
Clearly {N, S} = Q(T) since N, S are both fixed points. Let x ¢ {N, S} and
we show x is wandering. Choose y between T~ 'x and x. Then Ty lies between

N
T x

X

Ty
Tx

xand Tx. Let U be the open arc between yand Ty. Then U is a neighbourhood
of x and since T~"U is the open arc with end points T™"y, T™"*1y we see
that the sets {T~"U};%, are pairwise disjoint. Therefore x is wandering and
Q(T) = {N,S}.

As mentioned before we show in Theorem 6.15 that if p is a probability
on the Borel subsets of X and invariant for T then u(Q(T)) = 1. For the
north-south map we can use this to find all the invariant probabilities
(see §6.4).

One can readily compute Q(T) when T: X , —» X 4 is a topological Markov
chain. The calculation is like the division of a Markov chain into equivalent
sets of states.
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§5.4 Topological Transitivity

Topological transitivity is a weakening of minimality. Again X always
denotes a compact metric space.

Definition 5.6

(i) A continuous transformation T: X — X is called one-sided topologically
transitive if there exists some x € X with {T"(x)|n > 0} dense in X.

(ii) A homeomorphism T:X — X is called topologically transitive if there
is some x € X with O7(x) = {T"(x)|n € Z} dense in X.

Both of these concepts make sense for a homeomorphism and we shall
see how they are related after giving some equivalent forms of the definitions.
Recall that a set which is the intersection of a countable collection of open
sets is called a G;.

Theorem 5.8. The following are equivalent for a homeomorphism T:X — X
of a compact metric space.

(i) T is topologically transitive.

(ii) Whenever E is a_closed subset of X and TE = E then either E = X or
E is nowhere dense (or, equivalently, whenever U is an open subset of X with
TU = U then U = J or U is dense).

(iii) Whenever U, V are non-empty open sets then there exists n € Z with

T™U) A V £ &,
(iv) {x € X:07(x) = X} is a dense G;.

PROOF

(i) = (ii). Suppose Or(xo) = X and let E # ¢, E closed and TE = E.
Suppose Uisopenand U < E, U # . Then there exists p with T?(x,) €e Uc E
so that 07(x,) = E and X = E. Therefore either E has no interior or E = X.

(ii) = (iii). Suppose U, V # J are open sets. Then | ] _, T"U is an
open T-invariant set, so it is necessarily dense by condition (ii). Thus

2 _L,TUNV#J.

(iii) = (iv). Let Uy, U,, ..., U,,... be a countable base for X. Then
{xe X|0r(x) = X} =21 Up=-0 T"U, and (Jg-_,, T™(U,) is clearly
dense by condition (iii). Hence the result follows.

(iv) = (i). This is clear. O

For the analogous theorem for one-sided transitivity we assume TX = X.
Note that if E = X the condition E « T~ 'E is equivalent to TE c E.
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Theorem 5.9. The following are equivalent for a continuous transformation
T:X > XwithTX = X.

(i) T is one-sided topologically transitive.

(i) Whenever E is a closed subset of X and E = T~ 'E then either E= X
or E is nowhere dense (equivalently, whenever U is an open subset of X and
T 'U c U then U = & or U is dense).

(iii) Whenever U, V are non-empty open sets there exists n>1 with
T"UAV#J.

(iv) The set of points x with {T"(x)|n > 0} dense in X is a dense Gj.

PRrROOF

(i) = (ii). Suppose {T"(x,)|n > 0} is dense in X, and suppose E is closed
and TE c E. Suppose U is a non-empty open set with U < E. Then
T?(x,) € U for some p > 0, so that {T"(x,)|n = p} = E. Therefore

{x0, T(xq),--->» TP }x¢)} UE=X.

By applying T to each side we get {T(xo), ..., T? " }(x¢)} U E = X so by
repeated application of T we have E = X. So if E has interior then E = X.
(ii) = (iii). Suppose U, V are non empty open sets. Then ()i, T7"U is
open and T~ (| Jz, T7"U) = |y T™"U so | Jz1 T7"U is dense by (ii).
Therefore T™"U n V # & for some n>1.
(idi) = ( iv If {U,};%, is a base for the topology then {x|{T"(x)},, o0 18

dense} = y Up_o T™™U,. By (iii) we know | Jw-o T~™U, is dense so
the result follows
(iv) = (i). This is clear. O

The assumption TX = X was made because of the type of behaviour
occurring in the following example. Let X = {1/n|n > 1} U {0} with the
induced topology from the real line. Define T:X — X by T(0) =0 and
T(1/n) =1/(n + 1). Hence T moves each point 1/n to the next point on the
left. Only the point 1 has a dense forward orbit so statements (i) and (iv) are
not equivalent for this example. Also if E = X\{1} then Ec T™'E and E
is closed so (ii) is violated.

We now consider the connection between the two types of transitivity
when T is a homeomorphism.

Theorem 5.10. Let T:X — X be a homeomorphism. Then T is one-sided
topologically transitive iff T is topologically transitive and Q(T) = X.

PROOF. Suppose {T"(xo)|n > 0} is dense in X. Clearly T is topologically
transitive. IfQ(T) # X there isa non-empty openset U such that { T"U|n e Z}
are pairwise disjoint sets. For some ny > 0, T"(x,) € U. Therefore T"*"(x,) €
T"U,n > 0, so that only {xo, T(x), . .., 7™ !(x,)} can belong to | )2, T~'U
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contradicting the fact that each set T~'U must contain an element of the
dense set {T"(xo)|n > 0}. Therefore Q(T) = X.

Now suppose T is topologically transitive and Q(T) = X. We use (iii) of
Theorem 5.9 to show T is one-sided topologically transitive. Let U, V be
non-empty open sets. We want to find some k > 1 with T™*U n V # . By
(iii) of Theorem 5.8 we know there is some N € Z with W= TU n V # &
so we may as well suppose N > 0. Since Q(T) = X Theorem 5.7 gives the
existence of n>N 4+ 1 with TT"WnW#g. Then T " MUnVo>
T "W n W # & so we can take k = n — N. O

Remarks

(1) An example of a topologically transitive homeomorphism which is
not one-sided topologically transitive is the following. Let X = {0} u {1} U
{(1/m)|n = 2} U {1 — (1/n)|n > 2} with the induced topology as a subset of
R. Define T:X — X by T(0) =0, T(1) = 1 and T maps any other point to
the next point on the left. Then if x ¢ {0, 1} the set {T"(x)|n e Z} is dense,
so that T is topologically transitive. Clearly T is not one-sided topologically
transitive. Notice in this case that Q(T) = {0} U {1}.

(2) In an analogous way we could define a homeomorphism T:X — X
to be one-sided minimal if {T"(x)|n > 0} is dense in X for each x € X. Then
one can show that T is one-sided minimal iff T is minimal. The “only if”
part of this is trivial and the “if” part follows from the following. One-sided
minimality is equivalent to X = | )., T7"U for each non-empty open set U.
If U is open and non-empty then the minimality implies U"Ew T *U=X.
Since X is compact we have X = THU u T*U U --- U T*U for some
integers k;. Choose N > Oso that N > |k;|,1 <j<randthenX = T™"X =
TNy - v T V*Uso X = )i, T™"U. Hence minimality implies
one-sided minimality. Of course Q(T) = X when T is minimal, because it
contradicts compactness of X to have an open set U with {T"U}%  pairwise
disjoint and | )= -, T"U = X. O

Topologically transitive homeomorphisms enjoy some of the properties
of minimal homeomorphisms and also allow other interesting things to
occur; e.g., a dense set of periodic points. We know from Theorem 1.11
that an ergodic affine transformation of a compact, connected, metric abelian
group is topologically transitive (even one-sided topologically transitive).
We now see that some of them have a dense set of periodic points.

Theorem 5.11. Let A: K" — K" be an ergodic automorphism of the n-torus K".
The periodic points of A are exactly those points (wy, . ..,w,) € K" where
each w; is a root of unity. (In additive notation these are the points of R"/Z"
of the form (xy,...,x,) + Z" where each x; is rational.) Even if A is not
ergodic these points are periodic for A so every automorphism A has a dense
set of periodic points.



130 5 Topological Dynamics

PrROOF. Let 4 be an automorphism. Let w = (w,, ..., w,) € K" be so that
each w; is a root of unity. There is some k > 1 with w* = e, the identity
element. For each fixed k the set Y, = {ze K":z* = ¢} is a finite subgroup
of K" and AY, = Y,. Hence each member of Y, is a periodic point and so
our original w is.

Now suppose A4 is ergodic. We shall use additive notation for this part
of the proof. If x + Z"e R"/Z" is fixed by A* then A*x = x + p for some
p € Z". In matrix notation this equation becomes

X1 D1

([4]-1)

Xn Pn

Since A is ergodic the matrix [4]* — I is an invertible matrix of integers
and so its inverse has rational entries. Therefore each x; is rational. Therefore
each periodic point is of the form x + Z" where the coordinates of x are
rational. O

Theorem 5.12. The two-sided and one-sided shifts have a dense set of periodic
points. For the two-sided shift {x,}* is fixed by T? iff x, = x,.,VneZ.
For the one-sided shift {x,}& is fixed by T? iff x, = x,,,Vn >0.

Proor. We shall consider only the two-sided case. If x = {x,}® and T?x = x
then x,,; = x; for each i. In other words, the points fixed by T? have the

*
form (..., X, 1XoX1, .+, Xp—1X0X1s -5 Xp—1X0X1, - -+ » Xp—1Xo, - - .) Where
we have free choice of x,, x;, ..., x,_. Therefore the periodic points are
dense. O

Parts (ii) and (iii) of Theorem 5.8 show that topological transitivity is
(in some sense) a topological analogue of ergodicity. Also, topologically
transitive homeomorphisms are “indecomposable;” i.e., we cannot write

X=E, TE,=E, and E, closed

when T is topologically transitive. So it seems that topologically transitive
homeomorphisms are better building blocks than minimal homeomorphisms.
If T has a decomposition into minimal pieces then each piece is also topo-
logically transitive. Not all homeomorphisms can be decomposed into
topologically transitive pieces; see the example in Remark (1) above. Two
important cases where a decomposition is possible are the following. A
distal homeomorphism T:X — X (ie. for every pair x # y there exists
0 =90(x,y) >0 with d(T"(x), T"(y)) > 6 Vne Z) can be decomposed into
minimal pieces i.e. X = U,-E, X; where I is some index set, the sets X; are
pairwise disjoint, closed, TX; = X, and Ty, is minimal and distal (Ellis [1]).
If T:M - M is an Axiom A diffeomorphism of a compact manifold M then
T|ocr is very important. It turns out that Q(T) = ( ;- ©; where the ©; are
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pairwise disjoint closed sets with TQ; = Q; and Ty, is topologically transitive
(Smale [1]).

The following gives a sufficient, but not necessary, condition for a topo-
logically transitive homeomorphism to be minimal.

Theorem 5.13. If X is a compact metrisable space, T:X — X a topologically
transitive homeomorphism, and if there exists a metric on X making T an
isometry, then T is minimal.

PrOOF. Suppose d is such a metric, ie., d(Tx, Ty) = d(x, y). Let Op(xo) = X

and consider x € X. We want to show that Or(x) = X. Let ye X and let
¢ > 0. There exist n,m € Z such that

d(x, T"(xo)) <&, d(y, T"(x0)) <,

so that
d(y, T"""(x)) < d(y, T"(xo)) + d(T"(xo), T"~™(x))
=d(y, T"(x0)) + d(T™(xo), x)
< 2e.
Therefore 04(x) = X. O

The following property of minimal homeomorphisms is enjoyed by
topologically transitive ones.

Theorem 5.14. If T is a topologically transitive homeomorphism or a one-
sided topologically transitive continuous transformation then T has no non-
constant invariant continuous function.

PrOOF. If f o T = f then f o T" = f so f is constant on orbits of points. The
result then follows. O

Remark. If all the T-invariant continuous functions are constant then T need
not be topologically transitive. The following is an example to illustrate this.
Let
X =(K?* x {0}) U (K* x {1})/(e,0) ~ (e, 1)

ie., two copies of the two-torus joined at the identity. Let 4: K* — K?* be an
ergodic automorphism and define 7: X — X by

T(x,0) = (Ax,0), T(x,1) = (Ax, 1).

Then T is not topologically transitive since T preserves K* x {0} and
K? x {1}. However, each continuous T-invariant function is constant since
it must be constant on both K? x {0} and K* x {1}, because A is ergodic,
and these two constants must be the same because they must agree at the
point (e,0) = (e, 1).
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The following theorems give many examples of topologically transitive
homeomorphisms and one-sided topologically transitive maps.

Theorem 5.15. Let T:X — X be a homeomorphism of the compact metric
space X and let m be a probability measure on the Borel subsets of X giving
non-zero measure to every non-empty open set. If T is an ergodic measure-
preserving transformation with respect to m, then m({x € X:04(x) = X}) = 1.
In particular, T is topologically transitive.

Proor. Let Uy, U,, ... be a countable base for the topology. Then

x:0:x)=X}=( U TU,
n=1k=—-wo
For each n the open set | J;% -, T*U, is T-invariant so by ergodicity has
measure 0 or 1. But U, is contained in this set and m(U,) > 0 since U, is
open. Therefore m(| Ji% -, T*U,) = 1 and so m{x:07(x) = X} = 1. O

Theorem 5.16. Let T:X — X be continuous with TX = X and let m be a
probability on the Borel subsets of X giving non-zero measure to every non-
empty open set. If T is an ergodic measure-preserving transformation with
respect to m then m({x € X :{T"(x)}& is dense}) = 1. In particular, T is one-
sided topologically transitive.

Proor. If {U,}7 is a countable base for the topology then {x|{T"x}§ is
dense} = (), o T7*U,.Foreachn, T~ (| izo T7*U,) = Uiz o T™*U,
and the ergodicity of T implies m(| J;%o T~*U,) = 1. The result then follows.

O

We now see whether our examples are topologically transitive.

Clearly, the identity map on X is only topologically transitive when X
has just one point. From Theorem 1.11 we know an affine transformation
T is one-sided topologically transitive iff it is ergodic, and if T is invertible
these conditions are equivalent to the topological transitivity of 7. In
particular a rotation T(x) = ax of a compact group is topologically transitive
iff {a"|n € Z} is dense iff {a"|n > 0} is dense iff T is minimal.

Since the shifts are ergodic for Haar measure we know, by Theorem 5.16,
they are one-sided topologically transitive. (Haar measure, in this case, is
the product measure given by weights (1/k,...,1/k), as can be seen by
showing this measure is rotation invariant.) One can easily construct a point
x with {T"(x)|n > 0} dense when T is the one-sided or two-sided shift.

The north—south map of K is not topologically transitive as the orbit
of a point on the right half of the circle always lies in the right half.

For a two-sided topological Markov chain T:X , —» X , one can readily
show that T is one-sided topologically transitive iff the matrix A is irreducible
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(i.e. Vi, j 3n > 0 such that the (i, j)-th element of A" is non-zero). A topolog-
ically transitive, but not one-sided topologically transitive, example is pro-
vided by the matrix (} 9).

§5.5 Topological Conjugacy
and Discrete Spectrum

In this section we consider the topological analogue of the theory of trans-
formations with discrete spectrum given in Chapter 3. To do this we need a
notion of conjugacy for homeomorphisms. The following seems to be the
most natural.

Definition 5.7. Let T:X —» X, S:Y —» Y be homeomorphisms of compact
spaces. We say T is topologically conjugate to S if there exists a homeo-
morphism ¢:X — Y such that ¢ T = S¢p. The homeomorphism ¢ is called
a conjugacy.

Remarks

(1) Topological conjugacy is an equivalence relation on the space of all
homeomorphisms.

(2) If T and S are topologically conjugate then T is minimal iff S is
minimal, and T is topologically transitive iff S is topologically transitive.
If ¢ is a conjugacy as in Definition 5.7 then ¢Q(T) = Q(S), and T"(x) = x
iff $"¢(x) = P(x).

Definition 5.8. Let X be a compact metric space, T: X — X a homeomor-
phism, and f a complex-valued continuous function on X which is not
identically 0. We say that f is an eigenfunction for T if there exists 1€ C
such that

f(Tx) = Af(x) VxeX.

We then call A the eigenvalue for T corresponding to the eigenfunction f.

Another way to write the above relationship is Urf = Afor f o T = Af.
We have the following analogue of Theorem 3.1.

Theorem 5.17. Let T be a homeomorphism of a compact metric space X and
suppose T is topologically transitive. Then

(i) If fo T = Af where 0 # f € C(X), then |A| = 1 and | f| is constant.
(i) If f, g are both eigenfunctions of T corresponding to the same eigen-
value then f = cg where c is a constant.
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(iii) A finite collection of eigenfunctions corresponding to distinct eigenval-
ues are linearly independent in C(X).
(iv) The eigenvalues of T form a countable subgroup of K.

PrOOF
(i) Since | f(Tx)| = ||| f(x)| we have
sup | /(Tx)| = [2[sup| /()]

Since TX = X this gives
sup | f(x)] = |A] sup | f(x)|
xeX xeX

and hence |4| = 1. Therefore | f(Tx)| = | f(x)| and by Theorem 5.14 | f(x)| =
constant.
(ii) By (i) |g(x)| > 0 Vx € X. The function f/g is T-invariant and therefore
constant by Theorem 5.14.
(iii) Let f(Tx)= A,f(x) where {1,} are all distinct for n=1,...,k.
Suppose
a filx) + ax fr(x) + -+ ap filx) =0 Vxe X,

whereg;e Cfori=1,...,k.
By applying the above equation to T'x instead of x, we get

a,-)»ilfl(x) + az)bizfz(x) + -+ ak}.;.(f;c(x) = 0\ Vx € X

Hence
1 1 s 1 a; fi(x) 0
At Ay Mg a f(x) _ 0
ATt A7Y \afl®) 0

All the A;’s are distinct so the matrix is nonsingular. Therefore q; f;(x) =0
VxeX,i=1,...,k Since f; is not identically 0 we have a; = 0 for each i.
Hence {fi, ..., fi} are linearly independent in C(X).

(iv) The eigenvalues clearly form a subgroup of K. To check there are
only countably many eigenvalues it suffices to show that if h: X — K is an
eigenfunction corresponding to an eigenvalue t # 1 then ||h — 1|| > §. For
then two eigenfunctions, with values in K, corresponding to different eigen-
values will be greater than distance % apart in C(X) and, since C(X) has a
countable dense set, there can only be countably many eigenvalues. So let
h(Tx) = th(x), © # 1. Choose x,€ X and p e Z so that tPh(x,) is in the
left-hand half of the unit circle. Then

I~ 1]/ = sup 9 ~ 1]

> ||n(T?xo) — 1| = ||tPh(x,) — 1| > %. O
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Remark. If T, S are topologically conjugate they have the same group of
eigenvalues. This is because if ¢ is a homeomorphism with ¢ T = S¢ then

foS=ifififodoT=Aif>0.

Definition 5.9. Let T be a homeomorphism of the compact metric space X.
We say that T has topological discrete spectrum if the smallest closed linear
subspace of C(X) containing the eigenfunctions of T is C(X), i.e., the eigen-
functions span C(X).

From the above remarks we know that when T is topologically transitive
and has topological discrete spectrum there is a countable collection {4,},
of eigenvalues and a linearly independent collection {f,}>-; of functions
f»: X = K such that { £,}7 span C(X) and f, o T = 4,,.

The following is a representation theorem for topologically transitive
homeomorphisms with topological discrete spectrum. In the proof we shall
use the Stone—Weierstrass Theorem: If A is a subalgebra of C(X) which
contains the constant functions, is closed under complex conjugation (i.e.
f e A= f e A), and separates the points of X (i.e. if x # y then f(x) # f())
for some f € A) then A is dense in C(X) (Dunford and Schwartz [ 1], page 272).

Theorem 5.18 (Halmos and von Neumann). The following are equivalent for
a homeomorphism T of a compact metric space X.

(i) T is topologically transitive and is an isometry for some metric on X.

(ii) T is topologically conjugate to a minimal rotation on a compact abelian
metric group.

(i) T is minimal and has topological discrete spectrum.

(iv) T is topologically transitive and has topological discrete spectrum.

ProOOF

(i) = (ii). Let p be a metric on X for which T is an isometry. Suppose
04(xo) = X. Define a multiplication * on O(x,) by T"xo * T™xo = T""™x,.
We have

o(T"xq * T™xq, TPxq * Tix4) = p(T" " ™xo, TP x,)
< p(T" ™xg, TP ™x0) + p(TP*™x0, TP 9xo)
= p(T"xo, TPXo) + p(T™xo, T?Xo).
Hence the map #:05(x) X Or(xo) = Or(x,) is uniformly continuous and
therefore can be extended uniquely to a continuous map *: X x X — X.

Also, p(T ™ "xg, T™"xo) = p(T™*"T "xo, T"*"T "x4) = p(T™xq, T"x0)

and so the map

inverse

07(xo) — Ox(x0)

is uniformly continuous and can be uniquely extended to a continuous map
of X. Thus we get that X is a topological group and is also abelian since it



136 5 Topological Dynamics

has a dense abelian subgroup {T"x,:ne€ Z}. Since T(T"x,) = T"*'x, =
Tx, * T"xq we have Tx = Tx, * x and so T is the rotation by Tx,.

(ii) = (iii). If T is a minimal rotation on a compact abelian group G then
each character of G is an eigenfunction. Let 4 be the collection of all finite
linear combinations of characters. Then A is a subalgebra of C(X), contains
the constants, is closed under complex conjugation, and separates points.
Applying the Stone-Weierstrass Theorem we see that the topological closure
of A is C(X).

(iii) = (iv) is trivial since minimality implies topological transitivity.

(iv) = (i). We can choose eigenfunctions f,: X — K, n > 1, with f(T) =
A.f, and where the f, are linearly independent and span C(X). Since the
collection { f,} spans C(X) it must separate the points of X, so

plx,y) =Y, —IJL(EC)_Z"—!M defines a metric on X.

n=1

Also

o(Tx, Ty) = 3 “nfn(x)z—nlnf,.(y)l

n=1

= p(x,y), since|i,|=1.

It remains to check that p gives the topology on X. Let d be the original
metric on X. It suffices to show the identity map from the compact metric
space (X,d) to the metric space (X, p) is continuous, because a bijective
continuous map from a compact space onto a Hausdorff space is a homeo-
morphism. Let ¢ >0 and choose N so that Y 2y, (2/2") <¢/2. By the
continuity of the functions f, (n < N) there exists 6 > 0 such that d(x, y) <
implies | f,(x) — f,(»)| < ¢/2for 1 < n < N.Thend(x, y) < é implies p(x, y) <

N_g2 Y +e2 < O

Remark. If Tx = ax is a minimal rotation of a compact metric abelian group
G it is straightforward to show that the set of eigenvalues of T'is {y(a):y € G}
and every eigenfunction is a constant multiple of a character. This also
follows from Theorem 3.5 since each continuous eigenfunction is an L*-
eigenfunction.

We have the following isomorphism theorem.

Theorem 5.19 (Topological Discrete Spectrum Theorem). Two minimal
homeomorphisms of compact metric spaces both having topological discrete
spectrum are topologically conjugate iff they have the same eigenvalues.

Proor. If T, S are topologically conjugate they clearly have the same eigen-
values. We give the outline of two proofs of the converse.

(1) One proof is along the lines of the proof of Theorem 3.4, but instead
of using Theorem 2.10 we use the Banach—Stone Theorem. This says that
if X, Y are compact spaces, ¢:C(Y) - C(X) is a bijective linear isometry,
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and @(f - g) = O(f)P(g), then there exists a homeomorphism ¢:X - Y
such that @(f)(x) = f(¢(x)) (Dunford and Schwartz [1], p. 442).

(2) Another proof uses Theorem 5.18 and character theory. By Theorem
5.18 we can suppose T is a minimal rotation of a compact abelian group G,
Tx = ax, and S is a minimal rotation of a compact abelian group H, Sy = by.
We are assuming {y(a):y € G} = {5(b):6 € H}. Define a map 6:H — G by
(6(0))(a) = S(b). This is well- deﬁned and a bijection. Moreover, 0 is easily
checked to be a group isomorphism and hence induces an isomorphism
C:G - H. 1t is easy to show that CT = SC. O

Remarks

(1) Thus the theory of topologically transitive homeomorphisms with
topological discrete spectrum is analogous to that of ergodic measure-
preserving transformations with discrete spectrum.

(2) Just as in the case of measure-preserving transformations the theory
of minimal homeomorphisms with discrete spectrum can be extended to
an isomorphism theory of minimal homeomorphisms with quasi-discrete
spectrum (Hahn and Parry [1], Hoare and Parry [1]).

(3) When studying some homeomorphisms it is desirable to consider
notions of conjugacy weaker than topological conjugacy. Since the interesting
“random” action of T takes place in Q(T) one useful conjugacy notion is:
T and § are Q-conjugate if T|o(r) and S|, are topologically conjugate. This
is useful in studying the stability properties of Axiom A diffeomorphisms
(Smale [1]). Since a minimal homeomorphism T satisfies (T)= X, Q-
conjugacy is the same as topological conjugacy for the class of homeo-
morphisms discussed in this section.

§5.6 Expansive Homeomorphisms

Expansive homeomorphisms are an important class of transformations. We
shall see this in the study of topological entropy and the measure-theoretic
entropies of homeomorphisms in Chapters 7 and 8. We begin by making a
definition analogous to that of a generator (see §4.6).

Definition 5.10. Let X be a compact metrisable space and T:X - X a
homeomorphism. A finite open cover o of X is a generator for T if for every
bisequence {4,}2,, of members of « the set ﬂ,,_ - T~ "4, contains at most
one point of X. If this condition is replaced by “( )% _, T~ "4, contains at
most one point of X then a is called a weak generator.

These concepts are due to Keynes and Robertson [1].

Theorem 5.20. If T:X — X is a homeomorphism of a compact metrisable space
then T has a generator iff T has a weak generator.
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PRrOOF. A generator is clearly a weak generator. Now suppose f is a weak
generator for T, § = {B;,...,B}, and let § be a Lebesgue number for
(see Theorem 0.20). Let o be a finite open cover by sets 4; having diam(4;) < 6.
So if A;,is a bisequence in « then Vn 3j, with 4; < B; . Hence

N2 T7"4;, = (2, T7"B,,,

which is either empty or a single point. So o is a generator. O

The following shows that a generator determines the topology on X. If
o, B are open covers of X then a v f is the open cover of X by the sets 4 N B,
Ae€a, Be B. T™'a is the open cover by the sets T™*4, A € a.

Theorem 5.21. Let T: X — X be a homeomorphism of a compact metric space
(X,d). Let a be a generator for T. Then Ye > 0 AN > 0 such that each set
in \/Yy T~ "« has diameter less than ¢. Conversely, YN > 0 3¢ > O such that
d(x, y) < ¢ implies

N
x,ye () T "4,
-N
for some A_y, ..., Ay€a.

PrOOF. Suppose the first part of the theorem does not hold. Then 3¢ >0
such that Vj > 03x;, y;, d(x;,y;) > ¢ and 34;,e o, —j < i< j with x, y; €
(Vi=-; T7'A;;. There is a subsequence {j,} natural numbers such that
x; — x and y; — y since X is compact. We have x # y. Consider the sets
A;, o- Infinitely many of them coincide since « is finite. Thus x;,, y;, € Ao,
say, for infinitely many k and hence x, y € 4,,. Similarly, for each n, infinitely
many A, , coincide and we obtain 4, € « with x, ye T™"4,. Thus
x,ye () T™"4,,

contradicting the fact that « is a generator.

To prove the converse let N > 0 be given. Let 6 > 0 be a Lebesgue number
for a. Choose ¢ > 0 such that d(x, y) < & implies d(T"x, T'y) < § for —N <
i < N. Hence if d(x, y) <& and [i| < N then T'x, Ty € A; for some 4; € o.
Hence

N
x,ye () T 4, O
-N

Generators are connected with expansive homeomorphisms which were
studied for several years before generators were introduced.

Definition 5.11. A homeomorphism T of a compact metric space (X,d) is
said to be expansive if 36 > 0 with the property that if x # y then Ine Z
with d(T"x, T"y) > 6. We call § an expansive constant for T.
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Remark. Another way to give this definition is as follows. Consider X x X
with T x T acting on it. Define a metric D on X x X by D((u,v), (x, y)) =
.max{d(u, x), d(v, y)}. Then T is expansive iff 36 > 0 such that if (x, y) is not
an element of the diagonal, then some power of T x T takes (x, y) out of
the §-neighbourhood of the diagonal.

The following theorem is due to Reddy [1] and Keynes and Robertson [1].

Theorem 5.22. Let T be a homeomorphism of a compact metric space (X,d).
Then T is expansive iff T has a generator iff T has a weak generator.

ProoF. By Theorem 5.20 it suffices to show T'is expansive iff T"has a generator.
Let § be an expansive constant for T and « a finite cover by open balls
of radius §/2. Suppose x, y € (2., T~ '4, where A, € o. Then d(T"x, T"y) < &
Vn € Z so, by assumption x = y. Therefore « is a generator.
Conversely, suppose a is a generator. Let 6 be a Lebesgue number for a.
If d(T"x, T"y) < 6 Vn then Vn 34, € « with T"x, T"y € A,, and so,

x,ye (| T™"A,.

Since this intersection contains at most one point we have x = y. Hence
T is expansive. O

Corollary 5.22.1

(i) Expansiveness is independent of the metric as long as the metric gives
the topology of X. (However the expansive constant does change.)

(ii) If k # O then T is expansive iff T* is expansive.

(iii) Expansiveness is a topological conjugacy invariant i.e. if, for i = 1,2,
T;:X;— X; is a homeomorphism of a compact metrisable space and if
¢:X, > X, is a homeomorphism with ¢ T, = T,¢p then T, is expansive iff
T, is expansive.

PRrROOF

(i) This is because the concept of generator does not depend on the metric.
(ii) If o is a generator for T then

av T oy v T * Dy
is a generator for T*. Also any generator for T* is a generator for T.
(iii) A cover o is a generator for T, iff ¢ "'« is a generator for T'. O
Remarks. We make some more comments on how expansiveness behaves
relative to natural ways of getting a new homeomorphism from an old one.

(1) If T: X — X is expansive and Y is a closed subset of X with TY =Y
then Ty is expansive (i.e. a subsystem of an expansive system is expansive).
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2 U T;:X;> X;,i=1,2, are expansive thensois T; x T,: X, x X, —
X, x X,. This extends to finite products but not to infinite products.

(3) If T;:X; - X;, i =1, 2 are homeomorphisms and if ¢:X; - X, is a
continuous map of X; onto X, with ¢T, = T,¢ then T, is said to be a
factor of T. It is clear that if T, is minimal or topologically transitive or
has a dense set of periodic points then any factor T, also has the corre-
sponding property. However expansiveness is not preserved under the
operation of taking factors as the following examples show.

ExampLE 1. Consider the 2-torus K? and identity (z, w) € K? with (zZ, ). i.e.
an element of K2 is identified with its group inverse. This identification is
two-to-one except at the four points (1,1), (1, —1), (—1,1) and (-1, —1)
which are their own group inverses. The identification space with the quotient
topology is homeomorphic to the 2-sphere S2. Let ¢: K? — S? be the pro-
jection. Let A:K? — K? be a continuous automorphism. Since 4 maps
equivalence classes to equivalence classes it induces a homeomorphism
T:S? - S% Clearly T is a factor of A. We shall see later that A4 is expansive
if the matrix [ 4] has no eigenvalues of unit modulus. However the homeo-
morphism T:S5? — S?, induced by such an expansive 4:K? — K?, is not
expansive. To see this let us use additive notation on K2, so the identifi-
cation means (x, y) + Z2 is identified with (—x, —y) + Z2. Let V,, V, be the
eigenspaces in R? corresponding to the eigenvalues A,, A, of the linear
transformation 4 where |4, < 1 and |4, > 1. (s denotes stable and u denotes
unstable.) Let ¢ > 0 be given and choose any point (x, y) in the Euclidean
ball in R? with centre (0,0) and radius e. Consider the parallelogram deter-

mined by the translates of V;, V, that go through (x, y) and those that pass
through (—x, —y). The other vertices have the form (u,v) and (—u, —v)
and all the vertices are contained in the Euclidean ball of radius ce for
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1

some constant ¢ depending only on the slopes of ¥; and V,. Notice that
l47(x, y) — A(u, v)|| = ||Cx, y) = (u,v)|| if n < O since (u,v) — (x, y) € ¥, and
l47(x, y) — A"(—u, —v)|| = A|(x, ¥) — (—u, —v)|| if n > O since (—u, —v) —
(x,y) € V,. So if d is the metric on the torus induced from ||-||, and if we write
(x, y) rather than (x, y) + Z?2 as a point of K2, we have d(A"(x, y), A"(u, v)) < 2ce
Vn <0 and d(A"(x, y), A"(—u, —v)) < 2ce Vn > 0. If T:S?> - S? had a gen-
erator y = {Cy, ..., C;} then ¢ 'y would have the property that each set

w2 _o A7"¢1C; contains at most one equivalence class. Choose ¢ so that
2ce is a Lebesgue number for the open cover ¢~ !y of K2. The above shows
that some set ()2 _, A~"¢~'C; contains the equivalence class of (x, y) and
the equivalence class of (u, v), contradicting the fact that it contains at most
one equivalence class.

ExaMPLE 2. Let 7z = az be a minimal rotation of K. We shall represent T’
as a factor of a subset of the two-sided shift on two symbols. Consider the
cover of K by the closed intervals (arcs) between —1 and 1 on K. Call one
of them A, and the other A,. If z € K\{a", —a":n € Z} we can uniquely asso-

A

Ao

ciate a member of [ [*, {0,1} to zby z— {a,}*, if T"z € A, . Let A denote
the subset of [ [*,, {0,1} arising in this way. Let y:K\{a", —a":ne Z} > 4
be the map defined above. We want to show y is injective and the inverse
map can be extended to a continuous map ¢: 4 — K. We do this by proving
for each ¢ > O there is an integer N such that if x, y € K\{a", —a":ne Z}
and (Y(x)), = (Y(y)), for |n| < N then d(x, y) < &. Suppose & > 0 is given.
Choose N >0 so that {1,a**,a*?,...,a*"} is ¢/2-dense in K. Suppose
x,y e K\{a", —a":ne Z} and (Y(x)), = (Y(¥)), for |n| < N. We shall show
d(x, y) < &. The assumption (Y(x)), =¥(»)),, [n| < N means that ¢"x and
a"y belong to the same element of the cover for [n| < N. If y = —x then this
clearly cannot happen. So suppose the counter-clockwise distance from y to
x is smaller than the clockwise distance. For some n with |n| < N a"x is in
the open interval of length ¢ starting at 1 and going counter-clockwise.
Hence a"y must also be in the upper half of the circle and by the assumption
about the relative positions of x and y, a"y must be between 1 and a"x.
Hence d(a"x, a"y) < ¢ and so d(x, y) < .

Since T = Sy, where S denotes the shift, we have ¢S(x) = To(x) Vx e 4
where ¢:4 — K denotes the extension of ¥ . The continuous map ¢ is




142 5 Topological Dynamics

surjective because ¢(A) is a closed subset of K containing the dense set
K\{a"}*,. We shall see later that S is an expansive homeonormphism
whereas T, being an isometry, is not expansive.

We shall now show that every expansive homeomorphism is a factor of a
subset of a two-sided shift.

We shall need to use the following result which is similar to half of
Theorem 5.21. Recall that the diameter of a cover is the supremum of the
diameters of its members.

Theorem 5.23. Let T be an expansive homeomorphism of a compact metric
space (X,d) and let 6 be an expansive constant. Let y be a finite cover of X
(not necessarily an open cover) by sets {Cy,...,C,} with diam(C)) <,
1 <j<r Thendiam(\/}-_, T"/y) > 0asn— oo.

PRrOOF. Suppose the conclusion is false. There exists ¢, > 0 a subsequence {n;}
of natural numbers, points x;, y; with d(x;, y;) > ¢, and x;, y; € ﬂj‘z —n T"'Ci‘j
where C; ; € y. We can choose a subsequence {i,} of natural members such
that x; — xand y; — y. Hence d(x, y) > ¢,. Consider the sets C;_,. Infinitely
many of them coincide so for some C,, € y, x;,, y;, € C,, for infinitely many k.
Therefore x, y € C,,. Similarly, for each j infinitely many of the sets Ci.,,

coincide so thereis some C; € y with x, y € T~/C,,. Therefore d(T’x, T’y) < 6
"j e Z and so x = y, contradicting d(x, y) > &,. [l

Theorem 5.24. Let T:X — X be an expansive homeomorphism of a compact
metric space. Then there is an integer k > 0, a closed subset Q of

X, =1{0.1,... . k—1}

such that SQ = Q, where S is the shift on X,, and a continuous surjection
¢:Q — X such that

¢S(y)=Te(y) yel

PRrOOF. The proof will resemble that of Example 2 above. Let 6 be an expan-
sive constant for T. We shall construct a cover y = {Cy, ..., C,—;} of X by
closed sets with diam (C;) < 6 for each i, C; n C; = 0C; n 0C; if i # j and
(J#2¢$ 0C; having no interior.

We can do this as follows. Take an open cover {B,, ..., B,_;} by open
balls of radius 6/3. Let C, = By, and forn > 0let C, = B,\(B, u - - - U B,_,).
Then if i < j we have

C;inC;=0C;nC; (sinceint(C;)is B\(By U - U B;_;))
= 0C; n 0C; (since 0C; N int(C;) = B\(Bo U - - U B;_;) = ).
Also | J¥Zg 0C; = | J¥Z¢ 0B; which has no interior.
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Let D = ( J¥2{ 0C;and D, = (J®,, T"D. Then D, is a first category set
so X\D,, is dense in X. For each x € X\D  we can assign, uniquely, a member
of X; by x—(a,)%, if T"x e C, . Let 4 denote the collection of points of
X, arising in this way and let y: X\D_ — A denote the map just defined. We
want to show that  is injective and that the inverse of  can be extended to
a continuous map ¢: A4 — X. This will follow if we show for each ¢ > 0 there
is an integer N such that whenever x, y € X\D, and ({/(x)), = ({(y)), for all
|n| < N then d(x, y) <.

Let ¢ > 0 be given. Choose N so that diam (\/}- _y T"y) < ¢, by Theorem
5.23. If (Y(x)), = (Y(y)), for |n| < N then x, y are in the same element of
\/Yy T"y and so d(x, y) <e.

Since T = Sy we have ¢S(y) = T¢(y) Vy € A. The map ¢ is surjective
since the dense set X\D, is in its image. O

The following gives many measure-theoretic generators for an expansive
homeomorphism.

Theorem 5.25. Let T be an expansive homeomorphism of a compact metric
space (X,d) and let § be an expansive constant for T. If &= {Ay, ..., A}
is a partition of X into Borel sets with diam(A;) <9, 1 <j<k, then

© _ o T7"(E) = B(X). Therefore, if pis a probability measure on(X,%B(X))

Jor which T is measure-preserving then h(T) = h(T, (€)) (by Theorem 4.17).

Proor. Consider any open ball B(x;¢). By Theorem 5.23 for each n> 1
choose N, such that diam(\/}=_y, T~'¢) < 1/n. Let E, denote the union of
all the members of \/}=_, T ‘¢ that intersect B(x; ¢ — 1/n). Also

B(x;e —1/n) < E, = B(x;¢) so ) E,=B(x;¢).
1

n=

Therefore B(x; &) € \/- _,, T~ "</(£), and since every open set is a countable

union of open balls we see each open set belongs to \/;X _ T~ "«(¢).
Hence #(X) = \/> _o, T "(&). O

The above result will be important in Chapter 8.

Let us examine some examples.

(1) Isometries are never expansive except on finite spaces. Therefore
rotations on compact metrisable groups are not expansive if the group is
infinite.

(2) Let A be an automorphism of the n-torus, and [ 4] the corresponding
matrix. Then A is expansive iff [ A] has no eigenvalues of modulus 1.

SKETCH OF PROOF. One first shows that A is expansive iff the linear map A
of R (that covers A) is expansive. (The definition of expansiveness does not
need a compact space.) Then show that A4 is expansive iff the complexification
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of A is expansive. Then one shows that the complexification of A is expansive
iff the transformation given by the Jordan normal form is expansive. Lastly,
one shows that the normal form is expansive iff there are no eigenvalues of
modulus 1.

(Note: By Theorem 5.25 any partition of K" into sufficiently small n-rectangles
is a measure theoretic generator for an expansive automorphism of K".)

(3) The two-sided shift on k symbols is expansive. (and by Remark 1 so
are all two-sided topological Markov chains).

PRrOOF (1). Let the state space be {0, 1,...,k — 1}. Let 4; = {{x,}:x, = i},
i=01,...,k—1.Then 4 u A; U U A;_; = X and each 4; is open.
The cover o = {A,,...,A,_,} is a generator for the shift since if
x € ()®, T "A;, where the A; € o then

*
x=(. . .,1_2,1_1,10, 11’127"‘)'

We then use Theorem 5.22. O

PROOF (2). Let d be the metric given by:

0

Xn = Vn
d({xn}, {yn}) = _Z_ '|2|7n||
Suppose {x,} # {y,}. Then for some ny, x,,, # y,, and

0

1
d(T"O{xn}, T"O{yn}) = Z W |xn+no - yn+ng|

n=—o0
e |x"o - ynol = L

Thus 1 is an expansive constant. U

The last two examples show an expansive homeomorphism can have a
dense set of periodic points. There are expansive homeomorphisms with no
periodic points: in fact, there are expansive minimal homeomorphisms
which can be chosen of the form T|; where E is a minimal set for an expansive
homeomorphism 7.

Expansiveness is not related to topological transitivity or the size of the
non-wandering set. There is some restriction though on periodic points as
the next result shows.

Theorem 5.26. Let T:X — X be an expansive homeomorphism of a compact
metric space. For each integer p > 0 the homeomorphism T? has only a finite
number of fixed points.

ProOF. Let 6 be an expansive constant for T®. Suppose T?(x) = x and
T?(y) = y. Then either x = y or d(x, y) > . O
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The following shows there is some restriction on which spaces admit
expansive homeomorphisms.

Theorem 5.27. There are no expansive homeomorphisms of the unit circle K.

ProoOF. Suppose T:K — K is a homeomorphism. By replacing T by T2, if
necessary, we can assume T’ preserves orientation.

Case 1. Suppose T has a periodic point so that T? has a fixed point for
some p > 0. We know T is expansive iff T? is. Suppose T?(w,) = wy. If T?
has infinitely many fixed points then it is not expansive (Theorem 5.26). So
assume T7 has only a finite number of fixed points and let w, be the first
fixed point of T? one reaches by going anticlockwise around the circle from
w;. (We could have w, = w,.) Since T? preserves orientation the anticlock-
wise interval from w, to w, is mapped to itself by T?. Let z be a point in the
interior of this interval and suppose T*(z) is anticlockwise from z (we use a
similar proof if the opposite is true). Then T"?(z) - w, asn — oo and T~ "Pz —
w, as n— oo. Hence pairs of points in the interior of this interval which are
close stay close under iteration by T?. Therefore T? is not expansive.

Case 2. Suppose T has no periodic points. We shall show in Theorem 6.18
that there is a continuous surjection ¢: K — K and a rotation S: K — K such
that T = S¢ and for each w € K the set ¢~ (w) is either a point or closed
interval. If each set ¢ ~'(w) is a point then ¢ is a homeomorphism and T is
not expansive because the rotation S is not expansive. (See Example 1 above).
Suppose for some w,, the set ¢~ *(w,) is a closed interval of positive length.
Since ¢T = S¢ we know the sets {T "¢~ }(wo):n € Z} are mutually disjoint
closed intervals. If 6 > 0 is given we can choose N so that if |n| > N the
length of T~ "¢(w,) is less than §. Then by continuity of T we can find two
distinct points zy, z, in ¢ ~*(w,) such that d(T"z,, T"z,) < é for |n| < N. Then
d(T"zy, T"z,) < 6 Vn € Z so that § is not an expansive constant for T. There-
fore T is not expansive. O

R. Mane [1] has proved that if T: X — X is an expansive homeomorphism
of a compact metric space then X has finite covering dimension and any
minimal set for T has zero covering dimension.

Remark. If T: X — X is a continuous map of a compact metric space (X, d)
then we can define T to be positively expansive if 30 >0 so that
d(T"(x), T"(y)) < 6 Yn > 0 implies x = y. Similar theorems to ones above
can be proved for positively expansive maps. One-sided shifts provided
examples of positively expansive maps.



CHAPTER 6
Invariant Measures for Continuous

Transformations

In this chapter X will denote a compact metrisable space and d will denote
a metric on X. The g-algebra of Borel subsets of X will be denoted by %(X).
So #(X) is the smallest g-algebra containing all open subsets of X and the
smallest o-algebra containing all closed subsets of X. We shall denote by
M(X) the collection of all probability measures defined on the measurable
space (X, #(X)). We call the members of M(X) Borel probability measures
on X. Each x € X determines a member J, of M(X) defined by

1 ifxed
5"(”'):{0 ifx¢ A

So the map x — d, imbeds X inside M(X). Notice that M(X) is a convex set
where pm + (1 — p)u is defined by (pm + (1 — p)u)(B) = pm(B) + (1 — p)u(B)
ifpe[0,1]

Our aim in this chapter is to study the invariant measures for a continuous
transformation T: X — X. In the first section we collect some standard facts
about the set M(X).

§6.1 Measures on Metric Spaces

Our first aim is to show that a member of M(X) is determined by how it
integrates continuous functions. This will follow from the following theorem
which doesn’t need the assumption of compactness of X.

146
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Theorem 6.1. A Borel probability measure m on a metric space X is regular
(i.e,VB e #(X) and Ve > 03 an open set U, and a closed set C, with C, < B <
U, and m(U,\C,) < ¢).

ProoF. (The proof does not require X to be metric but only that each closed
set be a G;.) Let Z be the collection of all sets such that the regularity con-
dition holds, i.e., Z = {4 € #:Ve > 03 open U,, closed C,withC,=c 4 = U,
and m(U,\C,) < ¢}. We show that & is a g-algebra. Clearly X € #. Let
A e R; we show that X\4 € #. If ¢ > 0 there are open U,, closed C, with
C,c A< U, such that m(U\C,) <e Thus X\U,< X\4 < X\C, and
X\C\X\U,) = U\C,, s0

m(X\C\(X\U,)) = m(U,\C,) <e.

Therefore A\X € X.

We now show £ is closed under countable unions. Let A;, 4,,...€ Zand
let A =), A; Lete> 0 be given. There exist open Us,,,, closed C, , such
that C, , = A cU,,and m(U,,\C,,) <¢&/3" Let U, = | )y~ U,, (which is

open), C, = U - CE,,, and choose k such that m( E\U -1 C,n) <eg/2. Let
C,= U" 1 C,.» (which is closed). We have C, = 4 < U,. Also,

m(U\C,) < m(U\C,) + m(C,\C,)

<

m(U, \C.,) + m(C\C,)

1

118

n

<

n

118

9o

1

Therefore Z is a o-algebra.

To complete the proof we show that # contains all the closed subsets of
X. Let C be a closed set and & > 0. Define U, = {x € X:d(C, x) < 1/n}. This
isanopenset, Uy 2 U, 2---2U,2"-and (2, U; = C. Choose k such
that m(U,\C) < ¢ and let C, = C and U, = U,. This shows C € #. O

Corollary 6.1.1. For a Borel probability measure m on a metric space X we have
that for B € B(X)

m(B) = sup m(C), and m(B) = inf m(U).
C closed U open
C<B U=2B

The next result says that each m € M(X)is determined by how it integrates
continuous functions.

Theorem 6.2. Let m, u be two Borel probability measures on the metric space
X If[x fdm =[x fduVf € C(X) thenm = p.
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Proor. By the above corollary it suffices to show that m(C) = u(C) for all
closed sets C < X. Suppose C is closed and let ¢ > 0. By the regularity of m
there exists an open set U with C = U and m(U\C) < e.

Define f: X — R by

0 ifx&U
fx) = d(x, X\U) ,
e X\U) +dxC) TXeU

This is well-defined since the denominator is not zero. Also f is continuous,
f=0onX\U,f=10onC,and0 < f(x) < 1 Vx € X. Hence

u(C) < fxfdy - fxfdm < m(U) < m(C) +¢.

Therefore u(C) <m(C) +¢ Ve >0, so u(C) < m(C). By symmetry we get
that m(C) < u(C). O

The next theorem relates elements of M(X) to linear functionals on C(X).

Theorem 6.3 (Riesz Representation Theorem). Let X be a compact metric
space and J : C(X) — C a continuous linear map such that J is a positive operator
(i.e, if f =0 then J(f)=0) and J(1) = 1. Then there exists u € M(X) such
that J(f) = {x fduVf e C(X).

For the proof see Parthasarathy [2] p. 145.

Therefore the map u — J is a bijection between M(X) and the collection
of all normalised positive linear functionals on C(X). (Injectivity follows from
Theorem 6.2 and surjectivity by Theorem 6.3.) We shall denote the image of
punder this map by J,,. Clearly this bijection is an affine map (i.€. J ,, 4 (1 - pym =
pJ,+ (1 — p)J, pe[0,1], m, u e M(X))so M(X) is identified with a convex
subset of the unit ball in C(X)*. This allows us to get a topology on M(X)
from the weak* topology on C(X)*.

Definition 6.1. The weak* topology on M(X) is the smallest topology making
each of the maps p— [y fdu (f € C(X)) continuous. A basis is given by
the collection of all sets of the form V,(fi, .. ., fi; &) = {me M(X)||[ fidm —
(fidu| <& 1 <i<k} where pe M(X), k> 1, f,e C(X) and & > 0.

Clearly this topology on M(X) is independent of any metric chosen on X.
Theorem 6.4. If X is a compact metrisable space then the space M(X) is

metrisable in the weak* topology. If { f,}s%, is a dense subset of C(X) then

& [fadm = [y
Dlmi) = 2 ]

is a metric on M(X) giving the weak* topology.
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ProoF. The function D: M(X) x M(X)— R is clearly a metric. Consider the
metric space (M(X), D). For each fixed i the map pu — [ f;dpu is clearly con-
tinuous on (X, D) because |[f;dm — [ f;du| < 2/||f;||D(m, ). Since {f}7 is
dense in C(X) it follows that for each f € C(X) the map u— | fdu is con-
tinuous on (M(X), D). Therefore every open set in the weak* topology is open
in the metric space (M(X), D). To show the converse it will suffice to prove
each ball {m e M(X)|D(m, W < &} in (M(X), D) contains aset V,(g,, . . ., gy; 0)
wherek > 1,g;,e C(X)1 <i<k,and 6 > 0. If y € M(X) and ¢ > O are given,
choose N so that

® 2 &
—_ <.
n=§+l 2" 2
Let
efY 1 \!
o=— —_
(2=
Then V,(fi, ..., fy; 6) = {me M(X)|D(m, p) < &}. O
Remarks

(1) In the weak* topology p, — p in M(X) iff Vf € C(X) | f du, — | f du.
(2) The imbedding X — M(X) given by x — 0, is continuous.
(3) If u,, p € M(X), n > 1, one can prove the following are equivalent.

(i) u,— pin the weak*-topology
(ii) For each closed subset F of X, lim sup pu,(F) < u(F).

n—oo

(iii) For each open subset U of X, lim inf u,(U) = u(U).

(iv) For every A € 4 with u(0A) = 0, u,(A) - u(A).

We shall want to use (i) = (iv) so we give a proof. We shall in fact show
that (i) = (ii) and then (ii) = (iii) and (iv). Let F be a closed subset of X and
for k > 11let U, = {x € X|d(x,F) < 1/k}. The sets U, are open and decrease
to F. Therefore u(U,) — u(F). By Urysohn’s lemma choose f; € C(X) with
0<f, <1, fi=1o0nF and f, = 0 on X\U,. Then

lim sup p,(F) < limsup ffkdu,, = ffkdu < u(Uy)
0 lim sup,- , u(F) < p(F). Therefore (i) = (ii). Suppose (ii) is true and let
U be an open subset of X. Then

limsup p,(X\U) < w(X\U) so liminf u,(U) > u(U).
Therefore (ii) = (iii). Suppose (ii) is true and u(0A4) = 0. Then u(int(4)) =
#(A) = p(4)and limsup,_, ,, u,(A) < u(A) = p(A)and liminf, ., p,(int(A)) >
u(int(A)) = u(A). Therefore u,(A) — u(A). We have shown (i) = (iv). O
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(See Parthasarathy [1] for the proofs of the other implications.)
The following important result is an easy consequence of the compactness
of the unit ball of C(X)* in the weak*-topology, but we give a direct proof.

Theorem 6.5. If X is a compact metrisable space then M(X) is compact in
the weak*-topology.

Proor. We shall write u(f) instead of j fdu. Let {u,}¥ be a sequence in
M(X) and we shall show it has a convergent subsequence.

Choose f}, f», ... dense in C(X). Consider the sequence of complex
numbers {u,(f})} This is bounded by || fil,
sequence, say {u{")(f1)}. Consider the sequence of numbers {u{")(f,)}; this is
bounded and so has a convergent subsequence {u{?(f,)}. Notice that
{1?(f1)} also converges. We proceed in this manner, and for each i > 1,
construct a subsequence {uP} of {u,} such that {u} < (i~} c---c
{u"} = {u,}, and so that {u(f)} converges for f = f}, f>, . . . , fi. Consider
the diagonal {u{"}. The sequence {u{"(f;)} converges for all i; thus {u$(f)}
converges for all f € C(X) (by an easy approximation argument). Let J(f) =
lim,_, , u(f). Clearly J:C(X) — C is linear and bounded, as [J(f)| < ||f||
Also J(1) =1, and if f > 0 then J(f) = 0. By Theorem 6.3, there exists a
Borel probability measure pon X such that J(f) = {x f duforall fe C(X),ie,

f fau$ — fxf dp. O

Hence M(X) is a compact convex metrisable space and this will allow
us to use the fixed point theorems valid for maps of such spaces.

§6.2. Invariant Measures for Continuous
Transformations

Let T:X — X be a continuous transformation of the compact metrisable
space X. We shall show in this section that there is always some u € M(X)
for which T is a measure-preserving transformation of (X, 4(X), w).

We first notice that T~ '#(X) c #(X) (ie. T is measurable) because
{E € B(X)| T~ 'E € B(X)} is a o-algebra and contains the open sets. There-
fore we have a map TM(X)—»M(X) given by (Tu)(B) = w(T ~*B). We
sometimes write y o T~ ! instead of Tu. We shall need the following.

Lemma 6.6
[fdTw=[foTdu vfec)

Proor. It suffices to deal with real-valued f € C(X). By definition of T we
have [ypd(Tw) = [xp o TduVB e B(X). Therefore [hd(Tu) = [ho Tdy if h
is a simple function. The same formula holds when h is a non-negative
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measurable function, by choosing an increasing sequence of simple functions
converging pointwise to h. Therefore the formula holds for any continuous
f:X — R by considering the positive and negative part of f. O

Theorem 6.7. The map T:M(X)— M(X) is continuous and affine.

Proor. If f e C(X) then {fdTu={f o Tdy. Therefore if u,— p in M(X)
then (f dTu,,—jf Tdu,— [foTdu=(f dTu and so Ty, —» Tp. This
proves T is continuous.

If m pe M(X) and pe [0,1] then T (pm + (1 — p)u)(B) = pm(T~'B) +
(1 — pu(T™'B) = (pTm + (1 — p)Tu)(B) VB € #(X). This shows T is
affine. O

We are interested in those members of M(X) that are invariant measures
for T.

Let M(X,T) = {ue M(X)|Tu= u}. This set consists of all e M(X)
making T a measure-preserving transformation of (X, Z(X), w).

Theorem 6.8. If T:X — X is continuous and pu € M(X) then ue M(X, T) iff
[feTdu={fdu YfeC(X).

ProOF. This is immediate from Lemma 6.6 and Theorem 6.2. O

Since T:M(X) - M(X) is a continuous affine map of a convex compact
subset of C(X)* we could use the Markov-Kakutani theorem (see Dunford
and Schwartz [1], p. 456) to show T has a fixed point. However we will
show directly that M(X, T) is non-empty. The following gives us a method
of constructing members of M(X, T).

Theorem 6.9. Let T: X — X be continuous. If {6,},~, is a sequence in M(X)
and we form the new sequence {u,}2, by m,= (1/n) Y224 T'a, then any
limit point p of {w,} is a member of M(X, T). (Such limit points exist by the
compactness of M(X).)

PrOOF. Let u, — pin M(X). Let f € C(X). Then

'ffonu—ffdu‘=}irlolo [£oTdu,, — [1du,
nj—1 ) i
= lim |- fZ (f o T — f o T do,
- i[5, fur- ™=,
i 200 _
jow N

Therefore u e M(X, T). O
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Corollary 6.9.1 (Krylov and Bogolioubov). If T:X — X is a continuous
transformation of a compact metric space X then M(X, T) is non-empty.

Proor. We can make any choice for ¢, in Theorem 6.9; in particular choose
y € X and put g, = §, for each n. O

We have the following properties of M(X, T).

Theorem 6.10. If T is a continuous transformation of the compact metric
space X then

(i) M(X, T) is a compact subset of M(X).

(i) M(X, T) is convex.

(iii) p is an extreme point of M(X, T) iff T is an ergodic measure-preserving
transformation of (X, #(X), w).

(iv) If u,me M(X, T) are both ergodic and m # u then they are mutually
singular.

PRrOOF

(i) Suppose {u,}¥ is a sequence of members of M(X, T) and u, — u in
M(X). Then [fdTu = (f o Tdu = lim,., (f o T du, = lim,, {f du, =
{f du,sope M(X, T).

(ii) This is clear.

(iii) Suppose ue M(X, T) and u is not ergodic. There exists a Borel set
E such that T"'E = E and 0 < u(E) < 1. Define measures y; and pu, by
- KB N E) KB N (X\E))

d po(B) = ,
wE) B =T g

Note that u; and p, are in M(X, T), iy # u,, and
H(B) = W(E)uy(B) + (1 — u(E))uy(B).

Therefore u is not an extreme point of M(X, T).
Conversely, suppose u € M(X, T) is ergodic, and

1y(B B e B(X).

t=ppy + (1 = pp,
where py, u, € M(X,T) and pe[0,1]. We must show pu, = u,. Clearly
Uy « u (uy is absolutely continuous with respect to u) so that the Radon-
Nikodym derivative du,/du exists, (i.e.,

d
) = [, % o, vE<AX)

See Theorem 0.10). We have du,/du > 0. Let

E={x (Z—l:;(x)< 1}




§6.2 Invariant Measures for Continuous Transformations 153
We have

du d B
fEﬂT"Ed—;d#+IE B Gy = py(E) = p(T71E)

\T-1E dy
dpy dpy
= EnT-IEEd”+fT-lE\EEd

du, duy
fE\T‘lE E dp = fT'lE\E E; dp

Since du,/du <1 on E\T 'E and du,/du > 1 on T 'E\E and since
(T~ 'E\E)= (T~ 'E) = (T~ 'E N E) = y(E) — (T~ 'E N E) = w(E\T " 'E)
we have u(E\T 'E)= 0= u(T 'E\E). Therefore u(T"'E A E)=0 so
WE)=0 or 1. If u(E) =1 then pu,(X)= jE(dyl/dy)dy < u(E) =1 contra-
dicting u,(X) = 1. Hence we must have u(E) =

Similarly if F = {x|du,/du > 1} we have u(F) = 0 so that du,/du =1 a..
(w). Hence u; = p and so p is an extreme point of M(X, T).

(iv) By the Lebesgue decomposition (Theorem 0.11) there are unique prob-
ability measures u,, u, and a unique p € [0, 1] such that u = pu; + (1 = p)u,
where y; « m and p, is singular with respect to m. But u = Tu=pTu, +
1- p)Tyz and since T u, « Tm=m and Tyz is singular with respect to
Tm = m the uniqueness of the decomposition imply u,, u, € M(X, T). Since
L is an extreme point we must have either p=0orp = 1.

If p = O then p = u, and so u is singular relative tom. If p = 1 then u < m
and we can argue with du/dm as in (iii) to get u = m, a contradiction. O

so that

Remarks

(1) The second part of the proof of (iii) shows that if u, ue M(X, T),
Uy < pand pis ergodic then u; = p.

(2) Since M(X, T) is a compact convex set we can use the Choquet repre-
sentation theorem to express each member of M(X, T) in terms of the ergodic
members of M(X, T). If E(X, T) denotes the set of extreme points of M(X, T')
then for each u € M(X, T) there is a unique measure t on the Borel subsets
of the compact metrisable space M(X,T) such that t(E(X,T))=1 and

Vf e C(X)
Jereodutd = [ 0 ( Je e dm(x)) de(m).

We write y = [gx,,mdrt(m) and call this the ergodic decomposition of u. See
Phelps [1]. Hence every u € M(X, T) is a generalised convex combination of
ergodic measures. This is related to the decomposition of a measure-preserv-
ing transformation into ergodic transformations (see §1.5).

We shall now interpret ergodicity and the mixing conditions in terms of
the weak*-topology on M(X, T).
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§6.3 Interpretation of Ergodicity and Mixing

Let T: X — X be a continuous transformation of a compact metric space. We
say ue M(X, T) is ergodic or weak-mixing or strong mixing if the measure-
preserving transformation T of the measure space (X,%(X),u) has the
corresponding property.

Recall that y is ergodic iff Vf, g € L%(p)

1 n—1
T [ AT dueo~ [ fdu [gdu
We change this sllghtly for our needs.

Lemma 6.11. Let pe M(X, T). Then
(i) is ergodic iff Vf € C(X) Vg € LY(p)

1 n—1
T [ 790 dutx) ~ [ £y [gdn
(ii) w is strong mixing iff Vf € C(X) Vg e L)

JATg( dutx) > [ 1du [gdn

(iil) p is weak mixing iff there is a set J of natural numbers of density zero
such that Vf € C(X) Vg e L'(w)

lim f F(Tix)g(x) du(x) — f fdu f gdu.

Jpn— o0

PrOOF

(i) Suppose the convergence condition holds and let F, G € L%(u). Then

Ge LY so—z ffT'x)G )dp(x) — ffdudeu Vf e C(X).

Now approximate F in L?(u) by continuous functions to get

15 1fF(T* )G(x) du(x) deudeu

Now suppose p is ergodic. Let f € C(X). Then f € L%(u) so if h € L*(p) we
have

1 c 1
- ; [ 7T dp) > [ fdu [hdp.
If g € L*(y) then by approximating g in L*(u) by h € L*(u) we obtain

LS [AT0aaue) - [ fodu
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The proofs of (ii) and (iii) are similar and use Theorem 1.23. 0O

Theorem 6.12. Let T be a continuous transformation of a compact metric space.
Let ue M(X, T).

(i) u is ergodic iff whenever m € M(X) and m « p then

(i) w is strong mixing iff whenever m € M(X) and m < u then Trm > u.
(iii) u is weak mixing iff there exists a set J of natural numbers of density
zero such that whenever m € M(X) and m « p thenlimy ., T"m — pu.

ProOF

(i) We use the ergodicity condition of Lemma 6.11.
Let u be ergodic and suppose m « u, m e M(X). Let g = dm/du e L'(p). If
f € C(X) then

[ra( s Tm) =25 [7o1am =" [rrgance

> [fau [gdu=(rdu [1am=[rdn

Therefore (1/n)Y 724 T'm — p.

We now show the converse.

Suppose the convergence condition holds. Let g € L*(u) and g > 0. Define
me M(X) by m(B) = ¢ [pg du where ¢ = 1/( {xgdw). Then if f € C(X) we have,
by reversing the above reasoning,

%gfmwwmm~h@hm

If g € L*(p) is real-valued then g = g, — g_ where g,,g_ > 0 and we apply
the above to g, and g_ to get the desired condition of Lemma 6.11 for g.
The case of complex-valued g follows.

The proofs of (ii) and (iii) are similar to the above and use the corre-
sponding parts of Lemma 6.11. O

We now give an interpretation of the ergodic theorem for u e M(X, T).

Lemma 6.13. If T: X — X is continuous and p € M(X, T) is ergodic then there
exists Y € B(X) with w(Y) = 1 such that

11m—Zf(T'x) ffdu VxeY, VfeCX). O

n-»oo N j=
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ProoF. Choose a countable dense subset {f;}7 of C(X). By the ergodic
theorem there is X, € #(X) such that u(X,) = 1 and

) ln—l .
lim = ¥ fi(Tix) = f fudu Vx € X,
nso N =9
Put Y = (), X,. We have y(Y) = 1 and
1t
lim = Y fk(T'x)=ff,‘dy Vxe Y
ni=o

n—-oo Il

and each k > 1. The result now follows by approximating a given f € C(X)

by members of { f;}7. O
Theorem 6.14. Let T: X — X be continuous and yu € M(X, T). Then pis ergodic
iff

1 n—1

=Y Sy pae.

ni=o

PRrOOF. If i is ergodic then Lemma 6.13 says (1/n) Y724 87y = uVx €Y,
where u(Y) = 1.
Conversely suppose
1 n—1

7 Y Odriy—op forxeYand u(Y)=1.
i=0

Then

n—1

% Y f(Tix)> [fdu ¥xeY ¥fecC(x).

i=0

Ifxe Y, feC(X)and g e L*(y) then
n—1

1 .
= Y S(T')g(x) > g(9) [ f du

i=0
so applying the dominated convergence theorem yields the ergodicity
condition of Lemma 6.11. O

§6.4 Relation of Invariant Measures to
Non-wandering Sets, Periodic Points and
Topological Transitivity

We have mentioned earlier the following result about non-wandering sets.

Theorem 6.15. Let T:X — X be a continuous transformation of a compact
metrisable space X.
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(i) For every pe M(X, T) we have u(XT)) = 1.
(i) If there is some pe M(X, T) giving non-zero measure to every non-
empty open set then Q(T) =

ProoOF

(i) Let {U,}7 be a base for the topology. Then X\Q(T) is the union of
those U, such that the sets U,, T"'U,, T~ *U,, ... are pairwise disjoint.
Such a set U, must have measure zero for any invariant measure so
wX\Q(T))=0VYue M(X, T).

(i) If U, T"'U, T7*U,... are pairwise disjoint then u(U)=0 VYue
M(X, T). Therefore if there is some ue M(X, T) giving non-zero measure
to each non-empty open set then Q(T') = X. O

Corollary 6.15.1. If Q_(T) denotes the centre of T then u(Q,(T)) =1 for
allpe M(X, T).

PrOOF. By Theorem 6.15(i) we can naturally identify M(X, T) with M(Q(T),
T|qcr)- Applying Theorem 6.15(i) to T'|qr, gives u(Q4(T)) = 1 Yue M(X, T).
By induction we have u(Q(T))=1Vue M(X,T)Vn>1, so the result
follows. O

Theorem 6.15(i) and Corollary 6.15.1 help us to find M(X, T) for some
examples. When T:K — K is the north-south map we know Q(T) = {N, S}
so that we conclude M(K, T) = {pdy + (1 — p)ds|p € [0,1]}. The ergodic
invariant measures are dy, ds. Theorem 6.15(ii) can sometimes be used to
calculate Q(T). We used it to show Q(T) = G when T:G — G is an affine
transformation of a compact metrisable group G. This is because T preserves
Haar measure which is non-zero on non-empty open sets.

Remark. We can strengthen Theorem 6.15(i) as follows. A point x € X is
said to be recurrent for T if there is a sequence of natural numbers {n;} with
n; 7 oo and T"(x) - x. If R(T') denotes the collection of all recurrent points
for T then w(R(T)) =1 for all ue M(X, T). (It is clear that R(T) = Q(T).)
We can deduce this from the Poincaré recurrence theorem (Theorem 1.4). If
{U,}¥ is a base for the topology then X\R(T)= ), (U, n ()2, T7*
(X\U,)) and for each n and each ue M(X, T) we have u(U, n (), Tk
(X\U,)) = 0 by the Poincaré recurrence theorem.

We now consider the connection between periodic points and invariant
measures. The following result implies that we can consider periodic points
as contained in M(X, T).

Theorem 6.16. Let T:X — X be a continuous transformation of a compact

metrisable space X. Let N > 1 and x € X. Then T¥(x) = x iff
1 N-1

Z Oriy € M(X, T).
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If ue M(X, T) is purely atomic then p is a (possibly countably infinite) convex
combination of these “periodic orbit” atomic measures.

Proor. If pue M(X) then pe M(X,T) iff jf oTdu= jfdu Vf e C(X).
Therefore

1 N-1

1 N-1 - _ 1 N-1 .
N L Orwm€MXT) G ¥ (T =5 Ff(T) ¥ e CX)

This is equivalent to f(T"x) = f(x) Vf € C(X), which is equivalent to TVx =
x. The first part of the theorem follows from this Now suppose u € M(X, T)
is purely atomic. Then u = Y2, pid,, where x;e X and p; >0, ).¥ p; = 1.
We can assume that p, > p, > p3 > --.Since [f o Tdu=[fduVf e C(X)
we have Z?’; L Pif(T(x)) =Y. pif(x;) so that T(x,) is an atom with measure
p,. From this we get that T(x,) = x, for some N, and each atom T*(x,) has
the same measure. The desired result follows from a simple induction. [

Hence M(X, T) can be considered to contain the periodic orbits. Some
people like to think of an invariant probability for a continuous transfor-
mation as a generalisation of a periodic orbit.

Theorems 5.11 and 6.16 tell us that for an automorphism A of an n-torus
K" the set M(K", A) contains many atomic measures. This is also true for the
shift transformations (by Theorem 5.12).

We have already proved the following results (Theorems 5.15, 5.16)
relating invariant measures to topological transitivity. If T:X - X is a
homeomorphism of a compact metric space X and if there exists u € M(X, T)
which is ergodic and gives non-zero measure to each non-empty open set
then u({x € X|0.(x) = X}) = 1. Similarly, if such a ye M(X, T) exists for
a continuous T:X — X with TX = X then u({x € X|{T"(x)}§ is dense in
X}) = 1. From these results we concluded that ergodic affine transformations
are one-sided topologically transitive.

§6.5 Unique Ergodicity

In this section we study those transformations for which M(X, T) is as small
as possible i.e., contains only one member. It turns out that this is equivalent
to strong behaviour in the ergodic theorem.

Definition 6.2. A continuous transformation T:X — X is a compact metris-
able space X is called uniquely ergodic if there is only one T invariant Borel
probability measure on X, i.e., M(X, T) consists of one point.

If T is uniquely ergodic and M(X, T) = {u} then u is ergodic because it
is an extreme point of M(X, T) (Theorem 6.10(iii)).
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Unique ergocity is connected to minimality by:

Theorem 6.17. Suppose T: X — X is a homeomorphism of the compact metris-
able space X. Suppose T is uniquely ergodic and M(X,T) = {u}. Then T is
minimal iff w(U) > 0 for all non-empty open sets U.

PRrOOF. Suppose T is minimal. If U is open, U # ¢, then X = ( )i _, T"(V),
so if u(U) = 0 then m(X) = 0, a contradiction.

Conversely, suppose u(U) > 0 for all open non-empty U. Suppose also
that T is not minimal. There exists a closed set K such that TK = K, (J #
K # X.Thehomeomorphism T/ has an invariant Borel probability measure
ux on K by Corollary 6.9.1. Define ji on X by [i(B) = ux(K n B) for all Borel
sets B. Then fie M(X,T) and [i # u because u(X\K) > 0, as X\K is non-
empty and open, while fi(X\K) = 0. This contradicts the unique ergodicity
of T. O

The map T:K — K given by T(e*"®) = ¢2*®* § €[0,1], is an example
of a uniquely ergodic homeomorphism which is not minimal. The point
1 € K is a fixed point for T and Q(T) = {1} so that M(K, T) = {6, }.

We have the following result (due to H. Furstenberg [1]) about homeo-
morphisms of the unit circle K. We always write intervals on K anticlockwise
so [z, w] denotes the anticlockwise closed interval beginning at z and ending
at w. We shall use the fact, proved in §6.6, that a minimal rotation of K is
uniquely ergodic.

Theorem 6.18. Let T:K — K be a homeomorphism with no periodic points.
Then T is uniquely ergodic. Moreover

(a) thereis a continuous surjection ¢:K — K and a minimal rotation S: K —
K with ¢T = S¢. The map ¢ has the property that for each ze K, ¢~ }(2)
is either a point or a closed sub-interval of K.

(b) if T is minimal the map ¢ is a homeomorphism so that every minimal
homeomorphism of K is topologically conjugate to a rotation.

ProoF. Since T has no periodic points no member of M(K, T) can give
positive measure to a point of K. Let uy, u, € M(K, T)and put v==4(u; +u,) €
M(K, T). Define ¢: K — K by ¢(z) = exp(2niv([1, z])). Since v has no points
of positive measure we know that ¢ is continuous and is surjective.

For any three points z,, z,, z; of K we have v([zy,2,]) + v([22,23]) =
v([21,23]) mod 1, so

#(T(2)) = exp 2ziv([1, T(2)])
= exp 2ni(v([1, T(1)]) + ([ T(1), T(2)]))
= e*™*p((z)) where a = exp(2miv([1, T(1)])).

In other words, if S(z) = e?™*z then ¢ T = S¢b.
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We now show « is irrational. If «? = 1 then ¢(T?z) = ¢(z) Vz € K so that
v([1, T"(2)]) = v([1,z])mod 1 Vz € K. Hence v([z, T?z]) =0mod1 Vze K.
Since T? has no fixed points there exists 6 > 0 such that d(z, T?z) > 6 Vz € K.
Therefore each point of K is the end point of an interval of length § of zero
v-measure. This is not possible. Therefore o is irrational.

We now know S is minimal and so Haar measure m is the only element
of M(K,S). Therefore vo ¢, uy o™, uy o =" all equal m. Let [a,b] be
an interval in K. Then ¢([a, b]) = [e*™(1:aD, 2 ¥(1.0D] and ¢~ ¢p([a,b]) =
[c,d] where ¢ =inf{z:v([z,a]) = 0} and d = sup{w:v([b,w]) = 0}. Since
v d([a,b]) A [a,b]) = 0 we have u(d~ *¢p([a,b]) A[a,b]) =0,i= 1,2,
s ui([a,b]) = mlep~ ' $([a,b])) = m(@([a, b])). Hence uy([a, b)) = ua([a, b])
and so p; = u,. Therefore T is uniquely ergodic.

Let w e K and consider the set ¢~ }(w). Let z; € ¢ ~*(w). Then z, € ¢~ }(w)
iffv([zy,2,]) = 0 or 1 so that ¢ ~*(w) is the largest closed interval with zero
v-measure which contains z;.

It remains to prove (b). Suppose T is minimal. We need to show ¢ is a
homeomorphism. From Theorem 6.17 we know that if M(K, T) = {v} then
v(U) > 0 for all non-empty open sets U. If ¢(z) = ¢(w) then v([z,w]) =0
or 1 so that either v([z,w]) = 0 or v([w, z]) = 0. This can only happen when
z=w. O

H. Furstenberg [ 1] constructed an example of a minimal homeomorphism
T:K?* - K? of the two dimensional torus which is not uniquely ergodic.
The example preserves Haar measure and has the form T(z, w) = (az, ¢(z)w)
where {a"}®  is dense in K and ¢:K — K is a well chosen continuous map.

Recall that if u € M(X, T) is ergodic then there is a Y € #4(X) such that
uw(Y)=1and

S|

"il f(Tix) > f fdu VYxeY, VfeC(X)
i=0

(Lemma 6.13). When T is uniquely ergodic we get much stronger behaviour
of these ergodic averages.

Theorem 6.19. Let T:X — X be a continuous transformation of a compact
metrisable space X. The following are equivalent:

(i) Forevery feC(X) (1/n)Y.rZ5 f(T'x) converges uniformly to a constant.

(ii) For every feC(X) (1/n) Y124 f(T'x) converges pointwise to a
constant.

(iii) There exists ue M(X, T) such that for all f e C(X) and all x € X,

n—1

1 .
=Y (T~ [fdu.

i=0

(iv) T is uniquely ergodic.
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PrOOF

(i) = (ii) holds trivially.
(ii) = (iii). Define k:C(X)— C by

k(f) = lim - Z fTix)

n-oo Mi=
Observe that k is a linear operator and is continuous since

lnl

p 2 JT <7}

Also k(1) = 1, and f > 0 implies k(f) > 0. Thus by the Riesz Representation
Theorem there exists a Borel probability measure u such that k(f) = | f du.
But k(fT)=k(f) and so [fTdu={fdu. Hence pe M(X,T) by Theo-
rem 6.8.

(iil) = (iv). Suppose that ve M(X, T). We have

n—1
12le ) f* VYxeX

where f* = [ fdu. Integrating with respect to v, and using the bounded
convergence theorem we get that

ffdv\=ff*dv=f*=ffdu Vf e C(X).

Hence v = u by Theorem 6.2. Therefore T is uniquely ergodic.

(iv) = (i). If (1/n) Y723 fT¥(x) converges uniformly to a constant then
this constant must be | f du, where {u} = M(X, T). Suppose (i) is false. Then
ig € C(X), 3¢ > 0 such that VN 3n > N and 3x, € X with

n—1

1 )
- Y gTix) - [gdu

i=0

> &

If

S |-

i n—1 -
= n Z Tix, = Z T's

i=0 i=0
then |{gdu, — fgdu| > . Choose a convergence subsequence {u,} of {u,}.
If u,, — u., then pu, € M(X, T) by Theorem 6.9. Also |[gdu.,, — [gdu| > ¢ so
U, # u. This contradicts the unique ergodicity of T. O

Results about unique ergodicity known before 1952 are given in Oxtoby
[1]. More recent results of Jewett [ 1] and Krieger [2] imply that any ergodic
invertible measure-preserving transformation of a Lebesgue space is iso-
morphic in the sense of Chapter 2 to a minimal uniquely ergodic homeo-
morphism of a zero dimensional compact metrisable space. In particular
there are minimal uniquely ergodic homeomorphisms with any prescribed
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non-negative real number for their entropy. Hahn and Katznelson [1] had
previously found minimal uniquely ergodic transformations with arbitrarily
large measure-theoretic entropy.

§6.6 Examples

We now investigate M(X, T) for the examples listed in §5.1.
(1) The space of invariant measures for the identity map of X is the space
M(X) of all probabilities on (X, 4(X)).

(2) Theorem 6.20. If T(x) = ax is a rotation on the compact metrisable
group G then T is uniquely ergodic iff T is minimal. The Haar measure is
the only invariant measure.

PrOOF. If T is uniquely ergodic then T is minimal by Theorem 6.17, since
Haar measure is non-zero on non-empty open sets. If T is minimal then
{a"}*, is dense in G. Suppose u € M(G, T). Then

f fla"x) du(x) = f () du(x) VfeC(X) VneZ.

If b € G there is a sequence a" converging to b and by the dominated con-
vergence theorem

[ 16 dutx) = tim [ f(ax)dp) = 19 du(x) ¥f € CX).

This shows u is invariant for every rotation of G and is therefore Haar
measure. O

(3) If A:G— G is a surjective endomorphism of a compact metrisable
group G then M(G, A) contains many measures. Two of the members of
M(G, A) are always Haar measure and 6, where e is the identity element of
G. When 4:K" — K" is an automorphism of a torus Theorems 5.11 and 6.16
give us many atomic measures contained in M(G, A). Clearly 4:G — G can
only be uniquely ergodic when G = {e}.

(4) When T=a-A:G—- G is an affine transformation of a compact
metrisable group the set M(G, T') is sometimes small (as in (2)) and sometimes
large (as in (3)). When T is abelian we have that T is uniquely ergodic iff
T is minimal. The ‘only if* part follows by Theorem 6.17 and the fact that
T preserves Haar measure. The “if” part can be proved by checking statement
(i) of Theorem 6.19 holds. This was done by Hahn and Parry [1].

(5) The one-sided and two-sided shift maps have many invariant measures.
For every probability vector (p,, . . .,px—) on the state space Y the corre-
sponding product measure belongs to M(X, T). Other members of M(X, T)
are provided by Markov measures: if P = (p;;) is a k x k stochastic matrix
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andp = (po, . . ., px—1) is a probability vector with Y ¥-} p;p;; = p; the corre-
sponding Markov measure belongs to M(X, T). The product measures are
special examples of Markov measures (p;; = p;). Atomic measures in M(X, T')
are provided by Theorems 5.12 and 6.16.

(6) When T:K — K is the north-south map we know Q(T) = {N, S} so
that, by Theorem 6.15, M(K, T) = {pdy + (1 — p)ds|p € [0, 1]}.

(7) Suppose T:X,— X, is a two-sided topologlcal Markov chain, where

= (a;)_% is a k x k matrix with a;; € {0,1}. The set M(X 4, T) depends
very much on A; when a;; = 1 Vi, then we have Example 5, and when 4 = |
then T is the identity map on a space with k points. However if P = (p;;) is
a k x k stochastic matrix with 0 <pij<a;alli jand p=(po,...,Px-1)
is a probability vector with Y ¥Z} p,p;; = p; the Markov measure determined
by p and P is a member of M(X 4, T) because it gives zero measure to X\X 4.
When A is irreducible (i.e. Vi, j there is some n = n(i, j) such that 4" has
(i, j)-th element non-zero) we can obtain such a member as follows. By the
Perron-Frobenius theory of non-negative matrices (see §0.9) there is A > 0
which is an eigenvalue of A and no other eigenvalue of 4 has larger absolute
value. If A4 is irreducible then A is a simple eigenvalue and the corresponding
right and left eigenvectors have strictly positive entries. Suppose Y ¥2¢ u;a;; =
du; and Y523 aiv; = Av; where u; >0, v; >0 all i. Normalise (uy, . ..,u,
and (vy, - . ., D,) sO that Y ¥25 uw; = 1. Put p; = uy; and pi; = a;jv;/v;. Then
=(p;) is a stochastic matrix, 0 < p;; < a;;, and Y ¥ZJ p;p;; = p;. Therefore
the Markov measure determined by (pg, . ..,px—) and P is a member of
M(X 4, T). We shall see in Chapter 8 that this is a very important member of
M(X,,T).

We now know that every continuous transformation T:X — X of a
compact metric space has an invariant probability defined on the Borel
subsets of X. For some transformations, such as toral automorphisms and
shift homeomorphisms, the space M(X,T) contains many elements. The
question arises as to which are the important elements of M (X, T') to study.
It would be good if we could characterise certain members of M(X, T') by
“physical principles” (such as variational principles) and that these measures
had strong ergodic properties (such as making T a Bernoulli automorphism).
We shall see in Chapters 8 and 9 that such a variational principle exists
(and is analogous to a well known variational principle in statistical
mechanics). It turns out that for some transformations the measures picked
out by the variational principle do have strong ergodic properties. The
variational principle uses the idea of topological entropy which we discuss
in the next chapter.



CHAPTER 7
Topological Entropy

Adler, Konheim, and McAndrew [1] introduced topological entropy as an
invariant of topological conjugacy and also as an analogue of measure
theoretic entropy. To each continuous transformation T: X — X of acompact
topological space a non-negative real number or oo, denoted by h(T), is
assigned. Later Dinaburg and Bowen gave a new, but equivalent, definition
and this definition led to proofs of the results connecting topological and
measure-theoretic entropies. Bowen defined the entropy of a uniformly
continuous map of a (not necessarily compact) metric space and this leads
to a geometric proof of the formula for the topological entropy of an auto-
morphism of an n-torus. In the first section of this chapter we give the original
definition of topological entropy and in §7.2 we give the other definition. In
the last section we calculate the topological entropy of our examples.

We shall use natural logarithms because this will be more appropriate
when we discuss topological pressure in Chapter 9.

§7.1 Definition Using Open Covers

Let X be a compact topological space. We shall be interested in open covers
of X which we denote by o, §, . .. .

Definition 7.1. If «, § are open covers of X their join a v f is the open cover
by all sets of the form A N B where A € a, B € 4. Similarly we can define
the join \/f-; «; of any finite collection of open covers of X.

Definition 7.2. An open cover f is a refinement of an open cover «, written
o < B, if every member of f is a subset of a member of .

164
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Hence a < av B for any open covers «, . Also if § is a subcover of a
then o < B.

Definition 7.3. If o is an open cover of X and T:X — X is continuous then
T~ ' is the open cover consisting of all sets T~ 4 where 4 € o.
We have

T Yoavp)=T Ya)v T"XB), and a < fimplies T 'a < T 1B.
We shall denote av T~ *av -+ -v T~ Do by \/1Z¢ T o
Definition 7.4. If o is an open cover of X let N(«) denote the number of
sets in a finite subcover of « with smallest cardinality. We define the entropy
of « by H(ax) = log N (o).
Remarks

(1) H() > 0.
(2) H(o) = 0iff N(o) = 1 iff X € a.
(3) If & < B then H(a) < H(p).

PrROOF. Let {Bj,...,Byg} be a subcover of f with minimal cardinality.

For each i34, € a with A; 2 B;. Therefore {A4;, ..., Ayy} covers X and is

a subcover of o. Thus N(a) < N(p). O
(4) H(av B) < H(o) + H(P).

PROOF. Let {A,, ..., Ayy} be a subcover of a of minimal cardinality, and
{By, ..., By} be a subcover of  of minimal cardinality. Then

{AinB;:1<i<N(),1<j<N(p}
is a subcover of a v f, so N(av f) < N(a)N(f). O
(5) If T:X - X is a continuous map then H(T ~'a) < H(w). If T is also
surjective then H(T ™ ‘o) = H(a).

PROOF. If {A;,..., Ayw} is a subcover of o of minimal cardinality then
{T™'Ay,..., T" ' Ay} is a subcover of T~ 'o, so N(T ™ 'a) < N(o). If T is
surjective and {T~'Ay, ..., T~ Ay-14} is a subcover of T~ 'o of minimal
cardinality then {A,, ..., Ay-1,} also covers X so N(o) < N(T 'a). 0O

Theorem 7.1. If « is an open cover of X and T:X — X is continuous then
lim,.,, (1/n)H(\/7=§ T ‘o) exists.

Proor. Recall that if we set

n—1
a,= H<\/ T_ioz>
i=o0
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then by Theorem 4.9 it suffices to show that
i <a,+a fork,n=>1.

We have

n—1 k—1
SH(\/ T_ioc>+H<T_” \ T_joc> by Remark (4)
i=0 j=0
<a, + a; by Remark (5). O

Definition 7.5. If o is an open cover of X and T: X — X is a continuous map
then the entropy of T relative to o is given by:

h(T, ) = lim lH(rl\_/1 T“a>.

s \i=o
Remarks
(6) A(T, o) = 0 by (1).
(7) o < Bthen h(T,a) < h(T, B).

PrOOF. If o < B then \//Z¢§ T ‘e < \/12§ T™'B, so by (3) we have that
H(\/12¢ T 'a) < H(\/?Z4 T~'B). Hence h(T, ®) < h(T; ). O

Note that if 8 is a finite subcover of & then oo < f so then h(T, &) < h(T, f).
(8) (T, o) < H().
PrOOF. By (4) we have

n—1

H(il\_/l T"&)s Y, H(T ')

i=0

< n-H(x) by(5). O

Definition 7.6. If T:X — X is continuous, the topological entropy of T is
given by:
h(T) = sup (T, )

where o ranges over all open covers of X.

Remarks:

9) W(T) =0.
(10) In the definition of h(T') one can take the supremum over finite open
covers of X. This follows from (7).
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(11) h(I) = 0 where I is the identity map of X.

(12) If Y is a closed subset of X and TY =Y then h(T|Y) < h(T).

The next result shows that topological entropy is an invariant of topo-
logical conjugacy.

Theorem 7.2. If X,, X, are compact spaces and T;:X; — X; are continuous
for i=1, 2, and if ¢:X,— X, is a continuous map with ¢X,; =X, and
¢ Ty = Ty then h(Ty) = h(T,). If ¢ is a homeomorphism then h(T,) = h(T,).

PROOF. Let o be an open cover of X ,. Then

(Tz,oc)—llmiH<\/ T;! )
1 -
=11:n;H \=/ > y (5)

= H
(07 )
= 11m H( \/ T >
" =h(Ty, ¢ la).
Hence h(T,) < h(T,). If ¢ is a homeomorphism then ¢ " 'T, = T ¢!
by the above, h(T;) < h(T,). O

In the next section we shall give a definition of h(T') that does not require
X to be compact and we shall prove properties of h(T) in this more general
setting. However, one result that is false when X is not compact is the
following.

Theorem 7.3. If T:X — X is a homeomorphism of a compact space X then

WT) = h(T ™).

PROOF

(]
H <T”" (n\_/l T'ioc>> by Remark (5)



168 7 Topological Entropy

§7.2 Bowen’s Definition

In this section we give the définition of topological entropy using separating
and spanning sets. This was done by Dinaburg and by Bowen, but Bowen
also gave the definition when the space X is not compact and this will prove
useful later. We shall give the definition when X is a metric space but the
definition can easily be formulated when X is a uniform space.

In this section (X, d) is a metric space, not necessarily compact. The open
ball centre x radius r will be denoted by B(x;r), and the closed ball by
B(x; r). We shall define topological entropy for uniformly continuous maps
T:X — X. The space of all uniformly continuous maps of the metric space
(X, d) will be denoted by UC(X, d). Our definitions will depend on the metric
d on X ; we shall see later what the dependence on d is.

Throughout this section T will denote a fixed member of UC(X,d). If n
is a natural number we can define a new metric d, on X by d,(x, y) =
max, ;.1 d(T(x), T'(y)). (The notation does not show the dependence on
T.) The open ball centre x and radius r in the metricd, is ('=¢ T~ 'B(T'x; r).

Definition 7.7. Let n be a natural number, ¢ > 0 and let K be a compact
subset of X. A subset F of X is said to (n, ¢) span K with respect to TifVx € K
Jdy e F with d,(x, y) <e. (ie.

Kc | h T 'B(T'y;e)).

yeF i=0

Definition 7.8. If »n is a natural number, ¢ > 0 and K is a compact subset
of X let r,e, K) denote the smallest cardinality of any (n, ¢)-spanning set
for K with respect to T. (If we need to emphasise T we shall write r,(¢, K, T').)

Remarks

(1) Clearly r,(e, K) < oo because the compactness of K implies the
covering of K by the open sets ()iZ4§ T 'B(T'x;¢), x € X, has a finite
subcover.

(2) If e; < &, then r,(gy, K) = r,(e,, K).

Definition 7.9. If ¢ > 0 and K is a compact subset of X let r(¢, K, T) =
lim sup,_, , (1/n)logr(e, K). We write r(e, K, T,d) if we wish to emphasise
the metric d.

Remarks

(3) Ife; < ¢, then r(ey, K, T) = r(e,, K, T) (by Remark 2).
(4) Thevalue of (e, K, T') could be co. (An example is given in Remark 14.)
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Definition 7.10. If K is a compact subset of X let h(T; K) = lim,_, o (e, K, T).
The topological entropy of T is h(T) = supg h(T; K), where the supremum
is taken over the collection of all compact subsets of X. We sometimes write
hys(T) to emphasise the dependence on d.

Before giving any interpretations or explanations of this definition we
shall give an equivalent but “dual” definition. This definition will use the
idea of separated sets which is dual to the notion of spanning sets.

Definition 7.11. Let n be a natural number, ¢ >0 and K be a compact
subset of X. A subset E of K is said to be (n,¢) separated with respect to T
ifx, y € E,x # y,implies d,(x, y) > e.(i.e, for x € E theset (|24 T~ 'B(T'x; ¢)
contains no other point of E).

Definition 7.12. If » is a natural number, ¢ > 0 and K is a compact subset of
X let s,(¢, K) denote the largest cardinality of any (n, &) separated subset of
K with respect to T. (We write s,(¢, K, T) to emphasise T if we need to.)

Remarks

(5) We have r,(e, K) < 5,(¢, K) < r,(¢/2, K) and hence s,(¢, K) < 0.

Proor. If E is an (n, ) separated subset of K of maximum cardinality then
E is an (n, ¢) spanning set for K. Therefore r,(¢, K) < s,(¢, K). To show the
other inequality suppose E is an (n, ¢) separated subset of K and F is an
(n,£/2) spanning set for K. Define ¢:E — F by choosing, for each x € E,
some point ¢(x) € F with d,(x, ¢(x)) < ¢/2. Then ¢ is injective and therefore
the cardinality of E is not greater than that of F.Hence s,(¢, K) < r,(¢/2,K). (J

(6) If e, < ¢, then s,(e;K) = s,(e,, K).
Definition 7.13. If ¢ > 0 and K is a compact subset of X put s(¢, K, T) =
lim sup,_, ., (1/n)log s,(¢, K). We sometimes write s(¢, K, T,d) when we need
to emphasise the metric d.
Remarks

(7) Wehaver(e, K, T) < s(¢,K, T) < r(¢/2,K, T') by Remark (5).

(8) Ifey < e, then s(ey, K, T) = s(e,, K, T).

(9) We have h(T; K) = lim,_, 4 s(¢, K, T), by Remark (7), so that h(T) =
supglim,_, ¢ s(e, K, T).

Hence h(T) can be defined using either spanning or separating sets.

Remarks

(10) If r,(¢, K) denotes the smallest cardinality of a subset of K that (n, ¢)
spans K then the proof of Remark (5) gives riy(e, K) < s,(¢, K) < rife/2,K)
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so we also have

h(T) = sup lim lim sup — log (e, K).

K ¢0 n-ow
We now make some comments about the definition of h(T).

Remarks

(11) If T is an isometry of (X,d) then clearly d, = d for all n so that
s,(e, K) = s4(e, K) and hy(T) =

(12) For r,(e, K) to increase with n the mapping T needs to increase
distances between some points. We can think of hy(T) as a measure of the
expansion of T relative to the metric d.

(13) The ideas for the definition come from the work of Kolmogorov on
the size of a metric space (see Kolmogorov and Tihomirov [1]). If (X, p) is
a metric space then a subset F is said to e¢-span X if Vx e X dy € F with
p(x,y) < ¢,and a subset E is said to be ¢-separated if whenever y, z € E, y # z,
then p(y, z) > &. The e-entropy of (X, p) is then the logarithm of the minimum
number of elements of an e-spanning set and the e-capacity is the logarithm
of the maximum number of elements in an ¢-separated set. So in the above
definitions we are considering the metric spaces (K,d,) and r,(e, K) (see
Remark 10) is the e-entropy of (K, d,) and s,(e, K) is the e-capacity of (K, d,,).
Therefore

h(T; K) = lim lim sup (s -entropy of(K d,))

e20 n—wo

1 .
= lim lim sup (e-capacity of (K,d,)).

=0 n-oo

(14) The following is an example when r(e, K, T) can be oo (see Re-
mark (4)). Consider the real line R with the Euclidean metric and let
T(x) = x*. Let K =[3,4]. I x, y > 2 we have d,(x, y) < eiff [x*" ' — y*" 7| <.
By the mean-value theorem |x*" ' — y?"7'| = 2"~ 122""" " 1|x — | for some
z between x and y, so that d,(x, y) < ¢ implies

PR P —

omn 122"'
Therefore a (n, ¢)-spanning set for [3,4] contains at least

on=292"" 1—-1
€
points so that

2n—222"‘1—1
rfe, Ky > ——— andr(e,K,T)= o
€
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We now investigate the dependence of hy(T) on the metric d and then
we shall consider h,(T) when X is compact. In this case the definition has
a geometric interpretation and we shall show it coincides with the definition
given in §7.1.

Definition 7.14. Two metrics d and d' on X are uniformly equivalent if
id.:(X,d) - (X,d’) andid.:(X,d’)— (X,d)

are both uniformly continuous.
In this case, Te UC(X,d) iff T e UC(X,d’).

Theorem 7.4. If d and d’' are uniformly equivalent and T € UC(X,d) then
hy(T) = hy(T).

PRrOOF. Let ¢; > 0. Choose &, > 0 such that

d'(x,y) <& =d(x,y) <&
and choose €3 > 0 such that

dx,y) <ez=d'(x, y) < &;.
Let K be compact. Then

r(e, K,d) <r,e,,K,d’) and
rn(82a Ka dl) S rn(83, Ka d)

Hence r(e;, K, T,d) < r(e,, K, T,d") < r(e3, K, T,d). If ¢, — 0, then ¢, >0,
and &3 — 0 so we have
hd(TaK) = hd'(Ta K) D

Remarks

(15) The following is an example of two equivalent, but not uniformly
equivalent metrics which give different values of entropy for some transfor-
mation. Let X = (0, 00). Define T:(0, 00) — (0, o0) by T(x) = 2x. Let d be the
Euclidean metric on (0, o). Then T € UC(X,d) and one can easily show
hy(T) > log(2) by estimating the value of ,(¢,[ 1,2]). Let d’ be the metric which
coincides with d on [1,2] but is so that T'is an isometry for d’ i.e. use the fact
that the intervals (2"~ *,2"], n € Z, partition X and T((2"~%,2"]) = (2",2"*'].
Then hy(T) = 0 by Remark 11 since T is an isometry for d’. The metrics d, d’
are equivalent but not uniformly equivalent.

If X is compact and if d and d’ are equivalent metrics then they are uni-
formly equivalent. Also each continuous map T: X — X is uniformly contin-
uous. Therefore if X is a compact metrisable space the entropy of T does
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not depend on the metric chosen on X (provided that metric induces the
topology of X).

The following will be useful later and it will allow us to simplify the
definition of h(T') when X is compact.

Theorem 7.5. Let (X, d) be a metric space and Te UC(X,d). If K< K, v
-+ U K, are all compact subsets of X then h(T;K) < max; ¢; <, W(T; K)).

Proor. Certainly s,(e, K) < s,(¢, K{) + - - + s,(¢,K,,). Fix ¢ > 0. For each n
choose K, ., such thats,(e, K, ) = max;s,(e, K ;) Thens,(e, K) <m - s,(¢, Ky )
and so,

lOg S,,(S, K) < logm + lOg S,,(E, Ki(n,s))'

Choose n; — oo such that

1
— log s,,(e, K) — lim sup logs (¢, K)
J n— oo
and so that Ky, , does not depend on j (ie., Ky, . = Ky Vj). Therefore
s(e, K, T) < s(e, Ky, T). Choose g, — 0 so that K, , is constant (= K;, say).
Then h(T; K) < h(T; K;,) < max;h(T, K)). O

Corollary 7.5.1. Let (X, d) be a metric space and T € UC(X,d). Let 6 > 0. In
order to compute hy(T) is suffices to take the supremum of h(T; K) over those
compact sets of diameter less than §.

Proor. If K is compact it can be covered by a finite number of balls By, . . . , B,,
of diameter §/2 and hence h(T; K) < max, .;..h(T; K n By). O

Corollary 7.5.2. If X is a compact metrisable space and d is any metric on X
then h(T) = hy(T)=h(T; X).

ProOF. If K is a compact subset of X then h(T; K) < h(T; X). It follows from
Theorem 7.4 that hy(T) does not depend on d. O

When X is compact we can use Corollary 7.5.2 to simplify the definition
of h(T). Take any metric d giving the topology of X. Then

WT) = lim llmsup L logr,(e, X) = lim llmsup log s,(&, X).
£2»0 n-oow e»0 n—oo

We can give the following interpretation of these expressions. Suppose we
want to count the number of orbits of length » (an orbit of length n is a set
{x, T(x), ..., T""(x)}) but we can only measure to an error ¢. Then r,(, X)
and s,(¢, X) both can be interpreted as the number of orbits of length n up
to error ¢ So as ¢ » 0 h(T) is a measurement of the growth rate in »n of the
number of orbits of length » up to error &.
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We shall now prove that the definition of A(T) in this section coincides
with that given in §7.1, when T is a continuous map of a compact metrisable
space. For the moment let us denote by h*(T) and h*(T,«) the numbers
occurring in the definition of topological entropy using open covers. In a
metric space (X, d) we define the diameter of a cover to be diam(a) = sup 4,
diam(A), where diam(A4) denotes the diameter of the set 4. If a,y are open
covers of X and diam(a) is less than a Lebesgue number for y then y < a.
The following result is often useful for calculating h*(T).

Theorem 7.6. Let (X,d) be a compact metric space. If {a,}{ is a sequence of
open covers of X with diam(a,) — O then if h*(T) < oo lim,,_, , h*(T,a,) exists
and equals h*(T), and if W*(T) = oo then lim,_, , h*(T,a,) = co.

PROOF. Suppose h*(T) < oo. Let ¢ > 0 be given and choose an open cover y
with h*(T,y) > h*(T) — e. Let 6 be a Lebesgue number for y. Choose N so
that n > N implies diam(a,) < . Then y < o, so h*(T,y) < h*(T,«,) when
n>N. Hence n> N implies h*(T) = h*(T,o,) > h*(T)—¢ so lim,_
h*(T,a,) = h*(T). If h*(T)= oo and a > 0 choose an open cover y with
h*(T,y) > a and proceed as above to show lim h*(T,«,) = co. O

Corollary 7.6.1. We have h*(T) = lim,_,, {sup h*(T, «)|diam(a) < 8}.

The next result gives the basic relationship between the two ways of
defining topological entropy.

Theorem 7.7. Let T: X — X be a continuous map of a compact metric space
(X,d).

(i) If o is an open cover of X with Lebesgue number 6 then
n—1
N< \/ T“a) < r,6/2,X) < s,(6/2, X).
i=0
(ii) If € > 0 and y is an open cover with diam(y) < ¢ then

ro(e, X) < su(e, X) < N<"\_/1 T"y).

i=0

ProOOF. We know from Remark 5 that r,(¢, X) < s,(¢, X) Ve > 0.
(i) Let F be a (n,/2) spanning set for X of cardinality r,(6/2, T). Then

n—1
X = UF Do T~B(T'x; §/2)

and since for each i B(T'x;§/2) is a subset of a member of o we have N(\/7Z§

T 'a) < r,(6/2, X).
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(ii) Let E be a (n, €) separated set of cardinality s,(e, X). No member of the
cover \/?24 T™'y can contain two elements of E so s,(e,X) < N(\/1Zo

T 'y). 0

Corollary 7.7.1. Let T: X — X be a continuous map of a compact metric space
(X,d). Let € > 0. Let a, be the cover of X by all open balls of radius 2¢ and let
y, be any cover of X by open balls of radius ¢/2. Then

n—1 n—1
N<.\_/o T"'a8> <r,(eX) < s, X) < N<.\_/0 T_i)’e>'

This leads directly to

Theorem 7.8. If T:X — X is a continuous map of the compact metric space
(X,d) then h(T) = h*(T) i.e. the two definitions of topological entropy coincide.

PrROOF. Ife> 0and a,,y, are as in Corollary 7.7.1 then h*(T,a,) < r(e, X, T) <
s(e, X, T) < h*(T,v,). If we put ¢ = 1/n and let n— oo the two end terms
converge to h*(T) by Theorem 7.6 and the middle terms to h(T). dJ

Remark. If we had set up the definition of this section on a uniform space
we could have proved Theorem 7.8, for a compact Haudsdorff space.

Corollary 7.7.1 also gives us

Theorem 7.9. If T:X — X is a continuous map of a compact metric space
(X,d) then

NP | TS |
h(T) = lim lim inf — logr,(¢, X) = lim lim mf; log s,(¢, X).
£e20 n-ooo N t=>0 n—wo
(We know by Corollary 7.5.2 that these formulae hold with “liminf” replaced
by “lim sup”.)

PRroOF. Corollary 7.7.1 gives

h*(T,o,) < lim inf% logr,(e, X) < lim inf% log s,(e, X) < h¥(T,y,)
and then put ¢ = 1/k and let k - co and use Theorem 7.6. O

We now turn to some more properties of topological entropy.

Theorem 7.10

(i) If(X,d)isametricspace, Te UC(X,d)andm > 0then hy(T™)=m"hy(T).
(i) Let (X;,dy), i = 1,2, be a metric space and T; € UC(X,,d;). Define a
metricdon X | x X, byd((xy,X2),(y1, y2)) = max{d;(x;, y1),dx(x2, y2)}. Then
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Ty x T,e UC(X; x X5,d) and hy(T, x T,) < hy(T;) + hy(T,). If either
X, or X, is compact then hy(T x T,) = hy(T;) + hy,(T,).

PrOOF
(i) Since r,(¢, K, T™) < r,.(¢, K, T) we have

1
~logrye K, T™) < —— log (e, K, T)
n mn

and therefore hy(T™) < m - hy(T).
Since T is uniformly continuous, Ve > 0 36 > 0 such that
d(x,y) <6 implies max d(T'x, T'y) <e.
O0<j<m-—-1
So an (n, 6)-spanning set for K with respect to T™ is also an (nm, ¢)-spanning
set for K with respect to T. Hence r,(6, K, T™) = rp..(e, K, T),somr(e, K, T) <
r(6, K, T™). Therefore

m - hy(T,K) < hy(T™ K).

(i) Let K; < X, be compact, i = 1, 2. If F; is an (n, ¢)-spanning set for K;
with respect to T; then F, x F, is an (n,¢)-spanning set for K; x K, with
respect to T, x T,. Hence

roe, Ky x K,, Ty x T,) <rye, Ky, Ty) r(e,K,, T,)
which implies

re, Ky x K,, Ty x T,) <r(e, K\, Ty) + r(e, K,, T,).
Therefore

h(Ty x Ty, Ky x Kj) < hy (T, Ky) + hy(T,, K5).

Let n;: X, x X, » X;, i = 1, 2 be the projection map. If K = X; x X, is
compact then K; = n,(K) and K, = n,(K) are compact and K < K; x K,.
Hence

h(Ty x T,, K) < hy(T, x T,, K; x K,).
Therefore

h(Ty x T))= sup hy(T, x T,,K)
KEXxX;
compact

= sup hy(T, x T, Ky x K3)
K1 S X,

K2SX,
cpt.

< sup hy (T, Ky) + sup hy(T,,K,)
KiSX, K>SX,
cpt. cpt.

= hd,(T1) + hdz(TZ)'
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Now suppose X, is compact. (The proof is similar if X ; is not compact but
X, is compact.) Since any compact subset of X; x X, isasubset of X; x K,
for some compact subset K, of X,, we have hy(T; x T,) = sup{hy(T; x T,,
X, x K,)|K, is a compact subset of X,}. Let K, be a compact subset of
X,.Letdo > 0.IfE, is a(n, 6) separated subset of X ; and E, is a (n, §) separated
subset of K, then E; x E, is a (n, §) separated subset of X; x K,. Therefore
50, X1 Xx K,, T; x T,) > s,,(é,Xl, T,) s 0,K,, T,)so

s(6,X; xK,, Ty x T2)>l1msup [logs 8, X, Ty)+1ogs,(6,K,, T,)]

n— o

> lim 1nf logs (0,X, Ty)+1lim sup— logs (6,K,, T,).

Letting 6 — 0 we get by Theorem 7.9
hy(Ty x Ty, X1 X K3) 2 hy (T1) + hg(T). O

There are examples of homeomorphisms T;:X; - X, (i = 1, 2) of non-

compact metric spaces for which hy(T, x T,) < hy(T;) + hy,(T,). From the
end of the proof of Theorem 7.10 one can see that one needs

lim sup — [logs (6,K,, Ty) + logs,(6,K,, T,)]

n— oo

< l1msup L logs, (6, Ky, Ty) + l1msup L logs,(0,K,, T,).
P. Hulse has shown how to obtain such an example where each X; is the real
line equipped with a special metric d; and each T; is the map x — x + 1.
The idea is that d, differs from the Euclidean metric on some intervals
[n, n+ 1] and d, differs from the Euclidean metric on [n, n + 1] for dif-
ferent values of n.

Remark

(16) If T is a homeomorphism with T, T~ ! € UC(X, d) then h,(T~!) can
differ from h,(T).If T:R — R is given by Tx = 2x and d is the usual Euclidean
metric then we shall see later that h,(T) = log 2 (it is easy to show h,(T) > log2
by estimating s,(e, [0, 1])). However T~ ! decreases distances so h, (T~ ') = 0.

§7.3 Calculation of Topological Entropy

Theorem 7.6 provided the only method we have given so far for calculating
the topological entropy of examples. The following is an analogue of the
Kolmogorov-Sinai theorem, and provides a method of calculating topo-
logical entropy for some examples.
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Theorem 7.11. Let T: X — X be an expansive homeomorphism of the compact
metric space (X, d).

(1) Ifo is a generator for T then h(T) = h(T, o).

(i) If 6 is an expansive constant for T then h(T) = (6o, T) = (¢, T)
for all 6, < 6/4.

PROOF.

(i) Let § be any open cover. Let § be a Lebesgue number for . By
Theorem 5.21 choose N > 0 so that each member of \/" y T™"« has diameter
less than 6. Then f < \/Yy T "o, and so,

h(T,B)sh(T, \N/ T—"a>

n=-N

1 k—1 N
= lim — H(\/ T < \/ T‘”a>>
k- o0 K i=0 n=-N
1 N+k—1
_ lim—H( \/ T"‘oc)

k- K n=-N
2N+k—1
=11m—H< \/ T"‘oc)
k= n=0
. 2N +k—1 1 SN
= lm =7 2N+k—1H< v T °‘>
= T, o)

Therefore h(T, f) < h(T,a) for all open covers § and hence
hT) = h(T,ow).

(ii) Let 6, < 6/4. Choose x;, ..., x, such that X = ( J¥_; B(x;;(/2) — 26,).
The cover « = {B(x;; 6/2)|1 < i < k} has 2§, for a Lebesgue number so by
Theorem 7.7 h(T,a) < r(dq, X) < 5(69, X) < h(T). The result follows by
part (i) since « is a generator. d

Corollary 7.11.1. An expansive homeomorphism has finite topological entropy.
We now apply Theorem 7.11 to some examples.

Theorem 7.12. The two-sided shifton X = [[2,, Y, where Y = {0,1,...,k — 1},
has topological entropy log(k).

PROOF. Let o = {Ay, . . ., A,_} be the natural generator, i.e.

Aj = {{xn}o—ow|x0 =}}
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Then by Theorem 7.11,

n— o i=0

h(T) = h(T. oc)—llm—logN<n\_/1 _ioc>

= lim llog(k") = log(k). O

n— oo

In a similar way, using the idea of a one-sided generator for positively
expansive maps, we get the entropy of the one-sided shift is log(k), when the
the state space has k points.

We now generalise the previous theorem.

Theorem 7.13. Let T:X — X be the two-sided shift on X =[[®, Y where
Y=1{01,...,k—1).

(i) If X, is a closed subset of X with TX, = X, then h(T|x,) =
lim,_, ., (1/n)1og 0,(X ), where 0,(X ,) is the number of n-tuples [ig,iy,...,0—1]
such that the set {{x,}®, € X1|x0 =gy Xpr1 = Iy_1} iS nON-empty.

(i) Let T4:X 4— X, denote the topological Markov chain given by an
irreducible k x k matrix A whose entries belong to {0,1}. Then h(T 4) = log A
where A is the largest positive eigenvalue of A (see Theorem 0.16).

PRrOOF

(i) Let a be the natural generator for T: X — X, as in Theorem 7.12. Then
a is a generator for T|x, and 0,(X;) = N(\/72¢ T1'«). The result follows from
Theorem 7.11.
(i) The set {{x,}%w € X{|Xo =105 Xy_1 =i,_1} is non-empty iff
Qi " @i, _, = 1. Therefore
k-1 k-1

0,(X ) = Y Qiois@isiy """ Qingin1= 2 (A" Digin-,

iy s in-1=0 i0,in-1=0

Qigi,

where (4"~ !);; denotes the( j,j)th entry of A"~ 1. If we define anorm on k x k
matrices by ||(b;)|| = Y ¥ 7L 0|b”| then we have

0X)=lA""", so - logG,,(XA) = log(||4"~!||*'") - log A
by the spectral radius formula. The result follows by (i). d

The corresponding one-sided results are true. Part (ii) holds also when 4
is reducible by arranging the matrix 4 in lower diagonal block form as in
the theory of Markov chains.

We now give a collection of transformations which will show there is a
transformation with topological entropy equal to any given positive real
number. Let f > 1 be given and we describe a transformation with entropy
log B. Suppose S ¢ Z. (We know the k-shift has entropy logk.)
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Consider the expansion of 1 in powers of 7%, i.e. 1 = Y 2, a,8" where

=[Bland a, = [B" — Di={ a;f""']. Here [x] denotes the integral part of
x€eR. Let k=[f]+ 1. Then 0<a, <k —1 for all n so we can consider
a={a,}7 as a point in the space X = [[72, Y where Y ={0,1,...,k — 1}.
Consider the lexicographical ordering on X, ie. x = {x,} <y = {y,,}‘{o if
x; < y; for the smallest j with x; # y;. Let T:X — X denote the one-sided
shift transformation. Note that T"a < a Vn > 0.

Let X;={x ={x,}?|x€ X and T"x < aVn > 0}. Then X, is a closed
subset of X and TX,; = X, We shall show h(T|x,) = log 8 by using the
formula h(T|x,) = llm,m,O (1 /n) log6,(X ) (Theorem 7.13).

We shall denote 0,(X ) by 0,. Recall that 6, is the number of n-blocks in
X;. A n-block (by,...,b,) occurs in X, iff for all ke {1,...,n} we have
b .. .sb) < (ay, ..., 8,4 1) Put 6, = 1 and a, = 0. We claim the formula
0,=1+ay0,+a0, ,+ - +a,b,holdsforalln > 0.Indeed, if (b,, .. .,b,)
occurs then either: (1) b; < a, and (b,, . . .,b,) occurs (there are a, 9 1 such
possibilities), or (2) b; = a, and (b,, . . . ,b,,) <(a,,...,b,). This means either
b, <a, and (bs, ...,b,) occurs (there are a,0,_, such possibilities), or (3)
b, =asand(b,,...,b,) < (as,...,a,). Finally we get eitherb,_, < a,_, and
(b,) occurs (there are a,_,0, such possibilities), or b,_, = a,_, and b, < a,
(there are a, + 1 such possibilities). Therefore

B0, =B""+ B aip7" 0,y + - + B"a,0,

so by the renewal theorem (Theorem 0.18) we have lim, , 870, = 0.5 B~
Q¥ na,p~m~'>0. (3.9 na,B~" converges by the root test) Therefore
h(T|xB) = lim,_, . (1/n)log6, = log . The transformation TIX is called the
one- szded B-shift. We can obtain the two-sided B-shift by letting X p=
{x=1{x)%0|x €[], Yand (x;,X;4,,...) € X, forall i e Z}. Then X, is a
closed subspace of [ |2, Y invariant under the two-sided shift

T 1% Y=[]2 Y
Therefore T| %, 1s a homeomorphism and, since 0,X p) = 0,(X;), we have
h(T|z,) = logh.

We already know that a rotation T of a compact metric group G has zero
topological entropy because there is a metric on G making T an isometry.
In the next chapter we shall calculate the topological entropy of a torus
automorphism. The north-south map of K has zero entropy. In fact we now
show any homeomorphism of K has zero entropy.

Theorem 7.14. If T: K — K is a homeomorphism of the unit circle then h(T) = 0.

Proof. We know T maps intervals to intervals because the intervals are the
connected subsets of K. Suppose the circle has length 1. Choose ¢ > 0 such
that

d(x,y) <e implies d(T 'x, T 'y) <%
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Consider spanning sets for K with respect to T. Clearly r,(¢, K) < [1/¢] + 1,
where[1/¢] denotes the integer part of 1/e. We shall show (e, K) < n([1/e] +1).

Suppose we have a (n — 1, ¢)-spanning set F of minimal cardinality
7. 1(¢, K). Consider the points of T"~'F and the intervals they determine.
Add points to this set so that the new intervals have length less than & We
have added at most [1/e] + 1 points. If E denotes the collection of new points,
put

F=FuT " UE

We claim that F' is an (n, €)-spanning set for K. Let x € K. Then 3y € F with
max d(T'x, T'y) <e.

0<i<n-—2
Ifd(T" 'x, T""'y) < & then our claim is proved. If there is no y € F with both
these properties, choose y € F with

max d(T'x,T'y) <e.

0<i<n-—-2
There are two closed intervals with end points 7"~ !(x) and 7"~ !(y). Choose
the one, and call it I, which is mapped by T ! to the interval, I, with end
points T""?(x) and T" *(y) and length less than or equal to & Choose a
point T""Y(z) e I,z e F/, with d(T" " 'x, T" " 'z) < &. Then T" %(z) € I so that
d(T"?(x), T""?(z)) < &. The interval I’ is mapped by T~! to an interval
I” with end points T" 3(x) and T"3(y) and length less than %. Therefore
the length of I” is less than or equal to ¢. Since T"~3(z) € I” we have d(T" " 3x,
T"~32) < &. By induction

d(T'x,T'z)<e forO0<i<n-—1.
Thus F' is an (n, ¢)-spanning set for K. So,
re,K)<r,_ 1K)+ [1/e] + 1

and hence
re, K) < n([1/e] + 1).

Therefore r(e, X) = 0, and so
hT)=0. O

Corollary 7.14.1. Any homeomorphism of [0, 1] has zero topological entropy.

Proor. T:[0,1] - [0,1] has either T(0) = 0 and T(1) = 1, or T(0) = 1 and
T(1) = 0. In both cases T? fixes both 0 and 1. Let S be any homeomorphism
of [0, 1] which fixes both 0 and 1. Let ¢:[0,1] — K be the continuous map
¢(t) = e*™. The map ¢ is injective on (0, 1) and ¢S¢ ~ ! is a homeomorphism
of K which fixes 1 € K. Let a, be the open cover of [0,1] by the intervals
[0,1/n),(1 — 1/n,1] and (k/2n,(k + 2)/2n),1 < k < 2n — 3. Then the open arcs
¢ ((k/2n), (k + 2)/2n)), 1 < k < 2n — 3, together with ¢([0,1/n) U (1 — 1/n,1])
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from an open cover B, of K. Wehave N(\/22¢ S’a,) < 2°N(\/228 (¢S¢~*)B,),
and so h(S,a,) <log2 + h(¢S¢p~1,B,). When n— co Theorem 7.6 gives
h(S) < log2 + h(¢S¢ ') = log2. This formula holds for any homeomor-
phism S of [0, 1] which fixes 0 and 1. We can put S = T? and get 2qh(T) <
log2. Hence h(T) = 0. O

We shall obtain an upper bound for the entropy of a differentiable map
of a finite-dimensional Riemannian manifold. Suppose M is a p-dimensional
Riemannian manifold, not necessarily compact. Let 7,M denote the tangent
space to M at x and let ||-|| denote the norm induced on t,M by the Rieman-
nian metric. Let T:M — M be a differentiable map and let 7, T:t .M —
17.M denote the linear transformation which is the tangent to T at x. The
norm of this linear transformation, calculated using the norms on t,M and
17.M induced by the Riemannian metric, will be denoted by ||z, T||. Let d
denote the metric on M induced by the Riemannian metric.

Theorem 7.15. For a differentiable transformation T:M — M of a p-dimensional
Riemannian manifold M we have hy(T) < max {0, plog(sup,. ||t T]|)}.

PrOOF. Let a = sup,.x||t,T|| If a = oo there is nothing to prove. If a < 1
the mean-value theorem implies T satisfies d(Tx, Ty) < d(x,y) Vx,y € M so
that hy(T) =

Suppose 1 < a < co. By the mean value theorem d(Tx, Ty) < ad(x, y).
Suppose K is a compact subset of M and ¢ > 0. We shall show r(e, K, T) < p
loga. We shall select convenient charts on M that cover K. Let |||||| denote
the norm on R” given by |||ul|| = max || if u = (uy,...,u,) € R” and let
B(0;7) denote the open ball in R? with centre 0 and radius r in this norm.
Choose differentiable maps f;:B(0,3) » M, 1 <j < g, such that K < | JI_,
fi(B(0; 1)). Let b > 0 be-so that d(f;(u), fJ V) < b | w—v ||| Yu, v e B(0;2),
1 <j<gq.Foranyé e (0,1)let E(5) = {(k,9, . ..,k,0) € R?|k; € Z} n B(0; 2).
The cardinality of E(d) is at most (4/5)". Each pomt of B(0; 2) is within distance
dofa pomt of E(6). Consider F(d) = | %= f;E(9). This set is clearly a (n,a"bo)
spanning set for K with respect to T. If we put 6 = ¢(a"b) ™! then r,(¢,K) <
q(4a"be ~')? = a"P(q47b~Pe~?). Therefore r(e, K, T) < ploga. 0

This result was proved by Bowen [1]. A. G. Kushnirenko had been the
first to show a C! transformation of a compact manifold has finite entropy.
In Chapter 8 we shall calculate exactly the entropy of a linear transforma-
tion of RP. Theorem 7.15 gives us an inequality for the entropy of a linear
transformation L:R” — RP. Suppose d is the Euclidean metric. By putting
T=L" in Theorem 7.15 we get n hy(L) < max(0,plog||L"|) so hy(L) <
max (0, log(spectral radius of L)).



CHAPTER 8
Relationship Between Topological

Entropy and Measure-Theoretic Entropy

In this chapter we study a fixed continuous transformation T:X — X and
how the measure-theoretic entropy h,(T), where u € M(X, T), varies with p.
We shall prove that the supremum of h,(T), as u varies over M(X, T), is equal
to the topological entropy of T. For some transformations T there is a
unique member m of M(X, T') with h,(T) = h(T) and this is an important
natural way of choosing a member of M(X, T). ‘

We also calculate the topological entropy of affine transformations of a
finite-dimensional torus.

§8.1 The Entropy Map

Let (X,d) be a compact metric space and let T: X — X be continuous. The
g-algebra of Borel subsets of X is denoted by #(X) and M(X, T) denotes
the space of all probability measures, on the measurable space (X, (X)),
which are preserved by T. We know that M(X, T) is a non-empty convex
set which is compact in the weak*-topology. If u e M(X,T) then T is a
measure-preserving transformation of the space (X, £(X), 1) and hence has a
measure-theoretic entropy that we shall denote by h,(T).

Definition 8.1. The entropy map of the continuous transformation T: X — X
is the map y — h,(T) which is defined on M(X, T') and has values in [0, c0].

We now investigate how the entropy map ties in with the convexity
structure and topological structure of M(X, T). We first consider the con-

nection with the convexity of M(X, T).

182
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Theorem 8.1. Let T:X — X be a continuous map of a compact metric space.
The entropy map of T is affine i.e., if u, me M(X,T) and p € [0,1] then
hpu+(1—p)m(T) = phu(T) + (1 - p)hm(T)

ProoF. We shall use H (¢) and h,(T, &) to denote the dependence on u of the
quantities that are used to define entropy.

Since ¢(x) = xlog(x) is concave (Theorem 4.2) we know that if B € #(X)
then

0= ¢(pu(B) + (1 — pm(B)) — pp(u(B)) — (1 — p)¢p(m(B))
= (pu(B) + (1 — pym(B))log(pu(B) + (1 — p)m(B)) — pu(B) log u(B)
— (1 — p)m(B)log m(B)
= pu(B)[log(pu(B) + (1 — p)m(B)) — log(pu(B))]
+ (1 — pm(B)[log(pu(B) + (1 — p)m(B)) — log((1 — pym(B))]
+ pu(B)[log(pu(B)) — log(u(B))]
+ (1 = pym(B)[log((1 — p)m(B)) — log(m(B))]
> 04 0+ pu(B)logp + (1 — p)m(B)log(1 — p) because log is increasing.
Therefore if £ is any finite partition of (X, 8(X))

0< Hpu+(1-p)m(€) — pH (&) — (1 — pH,(%)
< —(plogp + (1 — p)log(l — p))
<log?2.
If  is any finite partition of (X, #(X)) then by putting & = \/{Z5 T 'y in the
above we have
hpu+(1 —p)m(Ta 1’]) = phu(Ta 11) + (1 - p)hm(T, 1’])

Clearly

h (T) < ph(T) + (1 = p)h(T).

put(1—pym
We now show the opposite inequality. Let ¢ > 0. Choose 7, so that

h(T)y—¢ ifh(T)< o0
h (r (r

lTom) > {1/3 if h(T) = oo

and choose #, so that
h(T)—¢ ifh,(T)< o

bt > {7 ™

if h,(T) = o0.

Putting n = 5, v 11, in the equality above gives

b s {PT) + (= P(T) =& BT, hy(T) < 0
put+(1=pml L5 1/e if either h,(T) = oo or h,(T) = ©

so that hy, 1 (1 - pym(T) = ph,(T) + (1 — p)h,(T). O
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Remark. The first part of the proof shows that if u, m e M(X), p € [0,1], and
¢ is a finite partition then H,, .- m(&) = pH, (&) + (1 — p)H,(&). This
implies the corresponding inequality for an arbitrary finite convex combina-
tion of members of M(X). We shall use this in §8.2.

We now discuss the continuity properties of the entropy map of 7.

The entropy map of T need not be continuous. It is easy to show this for
many transformations including toral automorphisms and shifts. We shall
do it when T:X — X is the two-sided shift on the space X = ]_[°° {0,1}.
The points of X which are fixed by T have the form (...,x,_;X¢, Xy, . .,
Xp—1,X0>X1, -+ +»Xp_1,X0, - - .) Where we have free choice ofxo, XiyeoosXpy
(Theorem 5.12). Let p, be the atomic measure that gives each of these points
measure 1/2°. Note that u, e M(X,T) and h, (T) =0 because p, is con-
centrated on a finite set of points. Let u denote the (4,4)-product measure.
We know h,(T) = log2. We now show p, — u as p— co. The collection of
functions that depend on only a finite number of coordinates forms a dense
subset F(X) of C(X) (by the Stone—Weierstrass theorem). It suffices to show
[ fdu,— [ fduvfe F(X). If f € F(X) there exists N such that [ fdu, = [ fdu
if p > N. Therefore u, — p, and so the entropy map is not continuous at p.

The next example shows that sometimes the entropy map of T is not even
upper semi-continuous. Suppose Y = {0} U {(1/n)|n > 1} with topology
as a subset of R. Let X = [[®,, Y and let T: X — X be the shift homeomor-
phism. Let y; be the product measure obtained from the measure on Y that
gives the points 1/(j — 1) and 1/j each measure {. Then the measure-
preserving transformation T on (X, #(X), u;) is conjugate to the two-sided
(3,7)-shift and hence h, (T) = log2. However y;— u where u is the atomic
measure on X that gives measure 1 to the point ...,0,0, 0 0,0,...). Clearly
h,(T) = 0 so that the entropy map of T is not upper semi- contmuous. One
shows y; — u by checking [ fdu;— [ f du for the dense subset of C(X) con-
sisting of these continuous functions that only depend on a finite number of
coordinates in the product [ [%,, Y.

However, the following gives a family of homeomorphisms for which the
entropy map is upper semi-continuous.

Theorem 8.2. When T:X — X is an expansive homeomorphism of a compact
metric space the entropy map of T is upper semi-continuous, i.e., if ue M(X, T)
and ¢ > 0 there is a neighbourhood U of pin M(X, T) such that m € U implies
ho(T) < h(T) + ¢

PrOOF. In the proof we shall use the simple fact thatif Y 7oy a; =1 =) 7=, b,
and if there exists ¢ > 0 with a; — b; < ¢ Vi then |a — by < cm, Vi (because

—a; =Y j+i(a; — b)) < mc). Let 5 be an expansive constant for T. Let
,u e M(X,T) and &> 0 Lety = {Cy, ..., C;} be any partition of X into Borel
sets with diam (C;) < 6. By Theorem 5.25 we know h,(T) = h,(T,y). Choose
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N so that
<\/ T 1><h T)+—

Fix ¢; > 0 to be chosen later. Since u is regular, choose compact sets
K(io, . .. ,iy—1) = [ )}=o T7IC;, with ()0 T7/C;\K(io, . - - ,in-1)) < &;.
Then C > L=} {T’K(zo,.. ,iv—1)|i; = i}. The sets Ll,...,Lk are
compact and pairwise dls_]omt so there is a partition y = {C', ..., C;} with
diam (C)) < d and L;  int(C)) all j. We have

N-1
K(ig,...,iy_1) int( ﬂ T_jC:-J.).

j=0

e C(X) with 0 < f, < 1 which

..... iN-1 =

in_1)- Let

By Urysohn’s lemma choose f, ;. _,
vanishes on X\int((\}=¢ T~/C;) and equals 1 on K(i,

.....

Ulig, - - - »iy-1) = {me M(X, T)| Ul < 4}

[Foo s = [ o iy d

Theset U(ig, - .., iy_;)is an open subset of M(X, T) and if m € U(iy, ..., iy—1)
then m((\Y=o TIC) = [ fio,...ig- @M > [ fig i, A1t — &1 = (K (i, - -,
in_1)) — €. Hence m € U(iy, . . . ,iy—,) implies

N-1 . N-1 .
,u< N T"C,-J.) - m( N T"C}J.) < 2¢;.
j=0

j=0

Let U=t . .in..=1 Ulio,...,iy—y). If me U then, for any choice of

io,il’o-a’iN_l
N—-1 . N—-1 X
m( N T_’C§j> - u( N T"C,-J.)

j=0 j=0

< 2e.kN

by the result about probability vectors mentioned at the start of the proof.
So if m e U and ¢, is small enough the continuity of x log x gives

bl o)sn(ir)-s

Hence if m € U and ¢, is small enough

h,(T) = h,(T,y) by Theorem 5.25 since diam(y') <
N-1
Hm< \ T'fy’> by Theorem 4.10
j=0
N—-1 ) P
— Hu< \/ T"y> +5 by theabove
j=0

<h(T)+e.

Therefore the entropy map is upper semi-continuous. O
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Since an upper semi-continuous real-valued function of a compact space
attains its supremum this result gives us that if T is an expansive homeomor-
phism there is some me M(X,T) with h,(T) = sup{h(T)|pe M(X,T)}.
This will be useful in the next section when we show sup(h,(T)|u € M(X, T)}
is the topological entropy h(T).

We shall use the following result in the proof of the next theorem. It gives
a way of calculating measure-theoretic entropy for a continuous map. When
¢&={A,,..., A} is partition recall that diam(¢) denotes max, ., ., diam(4,).

Theorem 8.3. Let T: X — X be a continuous map of a compact metric space.
Let (£,)>-1 be a sequence of partitions X such that diam(&,) — 0. For every
ie M(X, T) h(T) = lim,.. , h(T.&,).

ProOF. Let u € M(X, T). Lete > 0. Choose a finite partition & = {4, ...,4,}
such that h(T,&) > h(T) — ¢ if h(T) < oo, or h(T, &) > 1/e if h(T) =
Choose ¢ > 0 to correspond to ¢ and r as in Lemma 4.15. Choose compact
sets K; = 4;, 1 <i<r, with u(4\K;) <6/(r + 1). Let ¢' = inf,;d(K,, K})
and choose n with diam(¢,) < §'/2.

For 1 <i<rlet EY be the union of all the elements of &, that intersect
K;, and let E® be the union of the remaining elements of &,. Since
diam(¢&,) < ¢'/2 each C € &, can intersect at most one K;. Then &, = {E{V, . . .,

EP} is so that ¢, < ¢, and w(EY A A) = wW(ENA) + w4 AEY) <
w(X\Jj=1 K)) + u(4\K) < 4. By Lemma 4.15 we have H,(£/¢,) <e.
Therefore if n is such that diam(¢,) < §'/2 then

h(T,&) < h(T,&,)+ ¢ by Theorem 4.12(iv)
<h(T,) %) + ¢

Therefore diam(¢,) < &'/2 implies h(T,¢,) > h,(T) — 2¢ if h(T) < co or
hT,&,) > (1/e) — ¢ if h(T)= oco. Therefore lim,_, h,(T,¢&,) exists and
equals h,(T). O

Recall from §6.2 that each u € M(X, T) has a unique ergodic decomposi-
tion u = jE(X,T)m dt(m) where 7 is a probability measure on the Borel subsets
of M(X,T) and t(E(X,T)) =1 where E(X,T) denotes the collection of
ergodic members of M(X, T). This implies thatif F: M(X, T) — Ris affineand
upper semi-continuous then F(u [E(x ) F(m) dt(m), since such a function
Fis the limit of a decreasing sequence of continuous affine functions. We have
the following relationship for entropy.

Theorem 8.4 (Jacobs). Let T:X — X be a continuous map of a compact
metrisable space. If pe M(X,T) and p = (g rymde(m) is the ergodic de-
composition of u then we have:

(i) if &is a finite partition of (X, B(X)) then h(T, &) = [gx, 1) hu(T, &) dr(m).
(i) h(T) = [gx, ) hulT) d(m) (both sides could be o).
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PrOOF

(i) Leté ={Ay,..., 4. LetZ =[]*, Ywhere Y = {1,2,...,k}. Define
(;5 X - Zby ¢(x) = {1 }®, if T"(x) € A;,. We have ¢T = S¢ where S:X - X
is the two sided shift. The map ¢ is measurable and if m e M(X,T) ¢m =
mo ¢~ ! is a measure on (X, 4(2)) and qu e M(Z,S). If m is ergodic for T
then clearly ¢m is ergodic for S. Therefore if u = [ex.mym dr( m) is the ergodic
decomposition of € M(X, T) then q‘)y (e, s pdr e é~1(p) is the ergodic
decomposition of ¢u. Since S:X — X is expansive the entropy map of S is
an upper-semi continuous affine real-valued function of M(Z, S) and so

hu(S) = [0 o 1SV dr e §7H0) = [+ hgin(S) dlm).

Since & = ¢~ 'n, where 7 is the natural generator of S, we have hg,(S) =
hgm(S, 1) = hn(T, &) Vm € M(X, T). Therefore

h(T,8) = [, 1l T O de(om)

(ii) Choose finite partitions &, g > 1, of (X, #(X)) with £, < ¢, for all
g and diam(&,) - 0. Then lim_, , h,(T,&,) = h,(T) Ym e M(X, T), by Theo-
rem 8.3, so by the monotone convergence theorem for the measure t we have

h(T)= lim h(T,¢,) = llm h(T,¢,) dt(m)

n
4o 0 g0 VEX.T)

= h,(T) dt(m). O

EX,T)

§8.2 The Variational Principle

In this section we prove the basic relationship between topological entropy
and measure-theoretic entropy: if T is a continuous map of a compact metric
space then h(T) = sup{h,(T)|ue M(X,T)}. The inequality sup{h,(T)|ue
M(X,T)} < h(T) was proved by L. W. Goodwyn in 1968. In 1970 E. L
Dinaburg proved equality when X has finite covering dimension and later
in 1970 T. N. T. Goodman proved equality in the general case. The elegant
proof we present is due to M. Misiurewicz.

We shall need the following simple lemma, where we use 0B to denote
the boundary of a set B(dB = B\int(B)).

Lemma 8.5. Let X be a compact metric space and p € M(X).

(i) If x € X and 6 > O there exists §' < & such that u(0B(x; 8')) = 0.
(i) If 6 > O there is a finite partition & = {A,, ..., A} of (X, B(X)) such
that diam(4;) < 6 and u(dA4;) = 0 for each j.
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Proor

(i) This is clear since we cannot have an uncountable collection of disjoint
sets of positive measure.

(ii) By (i) there is a finite open cover f = {B;,...,B,} of X by balls of
radius less than /2 with u(0B;) =0 for all j. Let 4, = B, and for n > 1
let A, = B,\(By W B, U -uUB,_;). Then ¢ = {4,,...,A,} is a partition of
(X, B(X)), diam(4,) < 9, and since 94, < )~ 0B, we have u(dA4,) = 0 for
all n. O

We now collect together some results we will use in the proof of the
variational principle. In this section X will always denote a compact metric
space and %(X) the g-algebra of Borel subsets.

Remarks

(1) fue M(X),1 <i<n,andp;>0,) "=, p;=1 then
Hipi‘li(g) = Z piHu;(i)
“ i=1

for any finite partition & of (X, Z(X)). (For the proof see the remark following
Theorem 8.1.)

(2) Suppose g, n are natural numbers and 1 <g<n For0<j<q—1
put a(j) = [(n — j)/q]. Here [b] denotes the integer part of b > 0. We have
the following facts

(i) a@) =a(l)=---=al(g—1).
(i) Fix0<j<gq—1.Then

0,1, ...,n—=1}={j+rqg+i0<r<a(j)—-1,0<i<g-1}uSs
where
S={0a1aa]‘la]+a()q,]+a()q+l n_l}

Since j + a(j)q = j + [((n — j)/q) — 1]q = n — q, we have the cardinality of
S is at most 2q.

(iii) For each 0<j<gq—1, (a()—)g+j<[((n—)/g—1]lg+j=
n — q. The numbers {j + rql0 <j < q— 1,0 < r < a(j) — 1} are all distinct
and are all no greater than n — q.

(3) If pe M(X, T) and if u(04;) = 0,0 <i<n — 1, then

n—1 n—1 n—1
u(@(ﬂ T’iA,~>>=0 since@(ﬂ T"’A,-)c J T 04,
i=0 i=0

i=0

Theorem 8.6. Let T: X — X be a continuous map of a compact metric space X.
Then h(T) = sup{h,(T)|u e M(X, T)}.
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Proor

(1) Let pe M(X, T). We show in this part that h,(T) < h(T). Let & =
{Ay,...,A,} be a finite partition of (X,%(X)). Choose ¢ > 0 so that ¢ <
1/(klogk). Since u is regular there exist compact sets B, 4;, 1 <j <k,
with u(4,\B;) <. Let  be the partition n = {B,, By, ..., B,} where B, =
X\ J%- B;. We have u(B,) < ke, and

. H(B; N Aj)).
B =- Y % y(B»qs(—M(B_)

= —u(By Z 4)( (BO)A)> since if i # 0, %—Oorl

< u(By) log(k) by Corollary 4.2.
< kelog(k) < 1.

The reason we can bring in topological entropy is that for each i # 0, By U
B;= X\| J;+:B; is an open set so f = {B, U By, ..., By U B,} is an open
cover of X. We have, ifn > 1, H(\/7Z5 T ') < log N(\/7={ T '), by Cor-
ollary 4.2, where N(\/?Z5 T~ ') denotes the number of non-empty sets in
the partition \/!Z§ T~'n; so H,(\/t=§ T 'n) < log(N(\/iZs T'B) - 2.
Therefore

h(T,n) < h(T,p) + log2 < h(T) + log2,
o)
h(T,&) < h,(T,n) + H,(¢/n) by Theorem 4.12(iv)

< h(T) + log2 + 1.

This gives h,(T) < h(T) + log2 + 1 for any continuous map T with pe
M(X, T). 1t therefore holds for T" so nh,(T) < nh(T) + log2 + 1 by Theo-
rems 4.13(i) and 7.10(i). Hence h,(T') < h(T).

(2) Let € > 0 be given. We shall find some pe M(X,T) with h(T) >
s(e, X, T), and this clearly implies sup {h(T)|u € M(X, T)} > h(T).

Let E, be a (n, ¢) separated set for X of cardinality s,(e, X). Let o, € M(X)
be the atomic measure concentrated uniformly on the points of E, i.e.
0, =(1/5,(6, X)) D xcE, Ox- Let u, € M(X) be defined by p,=(1/n) 124 0,0 T
Since M(X) is compact we can choose a subsequence {n;} of natural numbers
such that lim;_, , (1/n;)logs, (e, X) = s(e, X, T) and {u,,j} converges in M(X)
to some u € M(X). By Theorem 6.9 we know ue M(X, T). We shall show
h(T) > s(e, X, T).

By Lemma 8.5 choose a partition & = {4, ..., A4,} of (X, (X)) so that
diam(4;)<e and u(04;)=0 for 1 <i<k. Then H, (\/{Z¢ T '¢)=logs,(e, X)
since no member of \/{Z§ T~'¢ can contain more than one member of E,
and so s,(¢, X) members of \/7Z§ T~'¢ each have o,-measure 1/s,(e, X) and
the others have o,-measure zero. Fix natural numbers ¢, n with 1 <g <n
and, as in Remark (2), define a(j), for 0 <j < q — 1, by a(j) = [(n — j)/q].
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Fix 0 <j < g — 1. From Remark 2(ii) we have
ViZe TR =\{9 ' TP N1Zg T v \1es T

and S has cardinality at most 2q. Therefore

logs,(e,X) = H,, <"\_/1 T'%)
a(j)—1
< Z <T (rg +j) \/ T lé>+ Z Ha"(T ké)
r=0

keS

by Theorem 4.3(viii)

a(J) 1 g—1
< Y H,.r- (,.,m(\/ T ’£>+ 2qlog(k) by Corollary 4.2.

r=0

Sum this inequality over j from 0 to ¢ — 1 and use Remark 2(iii) to get

n—1

qg—1
qlogs,(e,X)< Y Hdnor-p<\/ T”f) + 2q* log(k).
i=0

p=0

If we divide by n and use Remark (1) we get

q ) 2¢>

o logs,(e, X) < <\/ T 'é) + —— log(k). (%)
By Remark 3 we know the members of \/¢2} T"é have boundarles of
p-measure zero, so lim;_,, p,(B) = u(B) for each member B of \/iZ5 T
(Remark 3 §6.1) and therefore lim;_, o, H,, ( (\Vizd T76) = H,(\/1Z$ T ).

Therelore replacing n by n; in () and lettmg jgo to oo we have gs(e, X T) <
H,(\/1Z§ T7). We can divide by q and let g go to oo to get s(e, X, T) <
hT,8) < h(T),. O

Corollary 8.6.1. Let T: X — X be a continuous map of a compact metric space.
Then
(i) h(T) = sup{h,(T)|p € E(X, T)}.

(i) A(T) = h(TIQ(T))~

(i) A(T) = h(T| 7).

@iv) If, fori=1,2, T;: X, > X, is a continuous map of a compact metric
space and if there is a bijection ¢: X, — X, which is bimeasurable (i.e. ¢ and
¢~ are measurable) and ¢T, = T,¢ then h(T,) = h(T,). (This generalises
the fact that topological entropy is an invariant of topological conjugacy.)

ProOF
(1) Let e > 0 be given. Choose u € M(X, T) such that

WT)—¢ ifh(T) < oo
h(T)> {1/5 if h(T) =
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If u = [px,rym dt(m) is the ergodic decomposition of u then, by Theorem 8.4,
h(T) = [gx.1)hu(T) dt(m) and so h,(T) > h,(T) — ¢ for some me E(X, T).
Hence
h(T) -2 ifh(T)< oo
hn(T) > {1/3 —¢  ifh(T)=w

so that sup{h,(T)|m € E(X, T)} = h(T).
(ii) By Theorem 6.15 we have u(Q(T)) = 1 Vu e M(X, T) so that

sup(h,(T)| € M(X, T)} = sup{h,(T)|u € M(Q(T), T|or)}-

(i) If pe M(X,T) then w(T"X) = u(T™"T"X) = u(X)=1. Therefore
w( Vv, T"X)=1 Yue M(X,T) so that we can identify M(X,T) and
M((\& T"X, T). The result follows from the variational principle.

(iv) We have pe M(X,,T,) iff po¢p~'eM(X,,T,). Also h(T,)=
h, . s-1(T,) so the result follows from the variational principle. O

§8.3 Measures with Maximal Entropy

The variational principle gives a natural way to pick out some members
of M(X, T).

Definition 8.2. Let 7: X — X be a continuous transformation on a compact
metric space X. A member p of M(X,T) is called a measure of maximal
entropy for T if h (T) = h(T).

Let M ,,.(X, T)denote the collection of all measures with maximal entropy
for T. After the next theorem, which gives the properties of M, (X, T), we
shall give an example where M, (X, T') is empty.

Theorem 8.7. Let T:X — X be a continuous transformation of a compact
metrisable space. Then

(1) M.(X, T) is convex.

(i) If h(T) < oo the extreme points of M. (X, T) are precisely the ergodic
members of M .(X, T).

(@iil) If WT)< oo and M, (X, T)# & then M. (X,T) contains an
ergodic measure.

(iv) If h(T) = oo then M (X, T) # &.

(v) If the entropy map is upper semi continuous then M, (X, T) is compact
and non-empty.

PROOF

(i) This follows since the entropy map is affine (Theorem 8.1).
(ii) If pe M(X, T) is ergodic then it is an extreme point of M(X, T)
(Theorem 6.10(iii)) and hence of M,,,(X, T). Now suppose 4 € M;x(X, T)
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is an extreme point of M ,,,,(X, T)and u = pu, + (1 — p)u, forsome p € [0,1],
K1, dz € M(X, T). Then, since h(T) = h(T) = ph, (T) + (1 — p)h,,(T) (Theo-
rem 8.1) and h, (T), h,,(T) < h(T) (Theorem 8.6), we must have u,, u, €
M,.(X,T). Hence u = p; = pu, and p is an extreme point of M(X, T') and
hence ergodic (Theorem 6.10).

(ili) Let p € Mp,(X, T) and let p = (g ymdr(m) be the ergodic decom-
position of y. By Theorem 8.4 h(T) = h(T) = (g, hn(T) dr(m) and since
h.(T) < h(T) (Theorem 8.6) we have m € M,,,(X, T) for t-almost all m.

(iv) By Theorem 8.6 choose u, € M(X, T) with h, (T) > 2" Let

[¢9)

1
u= Z ?.uneM(X,T)
n=1

Since

N 1
p=y i b+ 58 Y for some ve M(X, T)
n=1

we have
N

1
h(T)= Y, > h,(T)> N for each N (Theorem 8.1).

n=1

Hence pe M (X, T).

(v) The set M, (X, T) is non-empty because an upper semi-continuous
function on a compact space attains its supremum. The upper semi continuity
also implies M ,,(X, T') is compact because if u, € M (X, T)and yu, > ne
M(X,T) then h(T) = limsup,_ h, (T)=h(T) so that pe M,.(X,T). O

Remarks

(1) There is a minimal homeomorphism with h(T)= co but h,(T) <
oo Yu € E(X, T), showing that statement (iii) fails if h(T) = oo (Grillenberger
[1D).

(2) Part (v) together with Theorem 8.2, shows that M, (X, T) is non-
empty when T is expansive. This also follows from Theorem 7.11 and the
proof of the second part of the variational principle which gives a descrip-
tion of a measure with maximal entropy as a limit of atomic measures on
separated sets.

The first example of a homeomorphism with M, (X, T) = & was given
by Gurevi¢. We now give an example.

Choose numbers §, such that 1 < f,<2 but 8, »2. Let T:X,— X,
denote the two-sided f,-shift (see §7.3). We know h(T,) = log f8,. Suppose
d, is a metric on X, and we can suppose d,(x, y) < 1 Vx, y € X,. We define
a new space X which will be the disjoint union of the X, together with a
“compactification” point x,, and we shall put a metric on X so that the
subsets X, converge to x,,. Define the metric p an X by p(x, y) = (1/n*)d,(x, y)
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ifx, ye X,, p(y,x) = p(x,y) =Y 7., 1/i%ifxe X,,ye X ,and n < p, p(x, X) =

© 1/i%ifx € X,. Then (X, p) is a compact metric space. The transformation
T:X —» X with T|x, =T, and T(x,)= X, is a homeomorphism. If pe

(X T) then = Z =1 Pnltn + (1 - Z;?:l pn)éxw where Un € M(Xm Tn) and
Pn=0,> p,<1.Henceif pe E(X, T) then either u € E(X,, T,) for some nor
u=9,_. Therefore h(T)=sup{h,(T)|ue E(X,T)}=sup,.sup{h,(T,)|u.€
E(X,, T} =sup,s h(T,)=log2.If M,.,(X, T) # & then by Theorem 8.7(iii)
M ...(X, T) contains some ergodic measure yu. Then y € M(X,, T,) for some
nso h(T) = log B, < log2. Therefore M (X, T) = &.

There are minimal homeomorphisms with h(T) < co and M,,,(X, T) = &
(Grillenberger [1]). There are also diffeomorphisms of compact manifolds
with M,.(X,T)= & (Misiurewicz [1]). Note that if h(T)=0 then
MoX, T) = M(X, T).

There is a discussion in §20 of Denker, Grillenberger and Sigmund [1]
of necessary and sufficient conditions for M,,.(X, T) # . In particular the
following result of Denker is proved. The conditions h(T) < oo and
M .(X, T) # & are equivalent to the existence of a sequence {a,} ¥ of finite
open covers of X with Y =, h(T,a,) < oo and lim,_, , h(T, \/k~, a,) = h(T).

The following is an entropy analogue of unique ergodicity.

Definition 8.3. A continuous transformation 7:X — X of a compact metric
space is said to have a unique measure with maximal entropy if M ,.(X, T)
consists of exactly one member. Such transformations are also called intrin-
sicially ergodic (Weiss [1]).

Remarks

(1) If T is uniquely ergodic and M(X,T)= {u} then T has a unique
measure with maximal entropy, because the variational principle gives
h,(T) = h(T) in this case.

(2) If h(T) = oo and T has a unique measure with maximal entropy then
T is uniquely ergodic, because if M, (X, T) = {u} and me M(X, T) then
hy2 4+ m2(T) = 00 som = p.

(3) If M .(X,T) = {u} then p is ergodic. If h(T) = oo this follows from
(2) and if h(T) < oo it follows from Theorem 8.7(iii).

(4) There are two ways that T can fail to have a unique measure with
maximal entropy; either M, (X, T) = & or M,,(X, T) has at least two
members. One can easily obtain examples of the second type by taking a
disjoint union of two compact spaces on which homeomorphisms act. There
are however minimal homeomorphisms of the second type. Furstenberg’s
example of a minimal homeomorphism T of K2 which is not uniquely
ergodic (see §6.5) provides such an example because h(T) = 0 and therefore

Mo X, T) = M(X, T).

One way that unique measures with maximal entropy are useful is in
constructing isomorphisms.
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Theorem 8.8. Let T;:X; — X, (i =1, 2) be a continuous transformation of a
compact metrisable space and suppose T; has a unique measure, i;, with maxi-
mal entropy. Suppose h,(T,) = h,,(T,). If ¢:X,— X, is a bimeasurable
bijection with ¢ o Ty = T, o ¢ then p, o ¢~ = u, (and so ¢ is an isomorphism
between the measure-preserving transformations T; on (X;, B(X}), i.))-

Proor. By Theorem 4.11 h,,.4-1(T3) = hy,,(T1), s0 hy,.4-1(T,) = h,,(T,) so
Ho= o O

In the proof we only used the fact that T, has a unique measure with
maximal entropy. The fact that T also does follows from the existence of ¢.

In the next section we shall show that if T:G — G is an affine transforma-
tion of a compact metrisable group then me M_,,(G, T) where m denotes
Haar measure. In this case it is known that if h,(T) < oo then M,,,(G, T) =
{m} iff m is ergodic (Berg [1] Conze [1], Walters [4]).

We shall now prove this last statement in the special case when T is the
two-sided shift (which is a group automorphism).

Theorem 8.9. Let Y ={0,1,...,k—1}, X =[[®, Y and let T:X — X be
the two-sided shift. Then T has a unique measure with maximal entropy and
this unique measure is the (1/k,1/k, . .., 1/k)-product measure.

ProOF. We know h(T) = log k. Suppose h(T)=logk. Let £ = {Aq, ..., Ax_1}
be the natural generator (i.e. 4; = {{x,}*,|Xo =j}). Then logk = h(T) <
(1/myH,(\/1Z5 T7'¢) < (1/n)logk" = logk by Theorem 4.10 and Corollary
4.2.1.

Therefore H,(\/7Z¢ T~'¢) = logk" so, by Corollary 4.2.1 each member
of \/7Z¢ T™'¢ has measure (1/k"). Hence p is the (1/k,...,1/k)-product
measure. O

This was generalised to the case of topological Markov chains by Parry.
Recall from §6.6 that if T: X , — X , is a two-sided topological Markov chain
and 4 is an irreducible matrix then there is a canonically defined Markov
measure given by a probability vector (p,, . . .,px—;) and stochastic matrix
(pij) as follows. If A is the largest positive eigenvalue of 4 and (ug, . . ., t—1)
is a strictly positive left eigenvector and (v, . .., v,—) is a strictly positive
right eigenvector with Y ¥ZJ ww, =1 then p;, = uw, and p;; = a;;;/Av,, We
call this measure the Parry measure for T:X , > X ,.

Theorem 8.10. If T:X , - X , is a two-sided topological Markov chain, where
A is an irreducible matrix, then the Parry measure is the unique measure with
maximal entropy for T.

ProOF. We know h(T) = log A by Theorem 7.13.
Let u denote the Parry measure. We first show u e M, (X 4, T) by show-
ing h,(T) = logA. By the formula for the entropy of a Markov measure
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(Theorem 4.27) we have
a;;
I U Uj 1 ijuj
. ,Zo u; o < o, )

= Z & ” H4 logay, + log v, — log A — log;]

i, j=0
- k=1
=0- Z up;logv; + logA + ) uwv;logv; since a;; € {0,1}
j=o f=r

= logA.

We now show u is the only measure with maximal entropy. We know u
is ergodic since the matrix (a;;) and hence (p;;) is irreducible. By Theorem
8.2 and 8.7(v) we know that if {u} # M, (X 4, T) there is another ergodic
member m of M, (X, T). By Theorem 6.10(iv) m and u are mutually
singular so 3E € #(X ,) with u(E) = 0 and m(E) = 1.

Let & = {A,,...,A,_,} denote the natural generator i.e.

A'= {{xn}ofoo eX'AIXO =]}

Since o/(\/}=, T~'¢) 7 B(X 4) we can choose E, € o/(\/}=L -1, T ™€) with
(m + p)(E, A\ E)- 0. Hence u(E,) —» 0 and m(E,) — 1.
Let 7, denote the partition 5, = {E,, X\E,}. Then

1 2n-2 n—1 »
log/1=h,,,(T)32n <\/ T '§> 1Hm< \V/ T té)

i=—(n-1)

e [Hmw (A, 7))

[—m(E,)log(E,) — (I — m(E,))log(1 — m(E,))

2n —1
m(E,)log0,(E,) + (1 — m(E,))log 0,(X\E,)]

where 6,(B) denotes the number of elements of \ /7% ,_;, T ‘¢ that inter-
sect Be /(\/1ZL,- 1) T'¢). (Here we have used Corollary 4.2 to estimate
the entropy of the partitions of the sets E,, X\ E, induced by

n—1

Vo T7R)

i=—(n—1)

1 6.(E,) AX\E,)
loglszn_l[ (E,)log (E)+(1 m( ,,))log———(—;:l. )

However if Ce \/{Z1,_;) T7¢, say

Therefore

= {xn}—ool x—(n—l) o xn—l) = (j—(n—l)’ v ’jn—l)}
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then
n—2 a: ;
. Jplp+1
,LL(C) - “j—(n—l)vj-(n—l) l_[ v vjp+l
p=—(-1) ip
U; v;
_ J-(m-1)"Jn-1 : . —
=@ SIncea,., 1.
So if
a= min  uu, b= max uy;
O0<i,j<k—1 0<i, j<k—1
then
a b n-1 )
-1
WS#(C)SW—_l VCG. \(/ 1)T £
1= —(n—
Therefore
a 0,(B)

6,(B) < u(B)

IA
S5

Aln— 1

n—1
ST VBe.sz/( \/ T—"¢>.

i=—(n—1)

Using this with B = E, and B = X\E, in equality () gives

E 2n—-1
(1 — p(E))A>!
+ (1 — m(E,))log <a(1_—m(15))>]
and hence
0 < m(E,)log <al;§5§))>

+ (1 —m(E,)log(l — u(E,) — (1 — m(E,))log(a(l — m(E,))).

When n tends to oo the limits of the three right-hand terms are — 0, 0, 0
respectively. This contradiction shows that M (X 4, T) = {u}. O

Remark. If T: X — X has a unique measure, y, with maximal entropy then
one would expect u to be important because it was characterised in a natural
way from the variational principle. We shall generalise the variational
principle in Chapter 9 and this allows us to characterise other measures
in a similar way.

§8.4 Entropy of Affine Transformations

In this section we study the relationship between topological entropy and
the Haar measure entropy of an affine transformation. We also calculate
these entropies for an affine transformation of an n-torus. The first result
shows Haar measure is a member of M, (G, T) when T:G — G is an affine
transformation of a compact metric group.
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Theorem 8.11. Let G be a compact metrisable group and T = a - A an affine
transformation of G. Let m denote (normalised) Haar measure on G. Then
h(T) = h,(A) = h(A) = h(T). If d denotes a left-invariant metric on G then
h(T) = lim,_, limsup, ., — (1/n)logm((\'=5 A~ 'Ble; €)), where e denotes
the identity element of G and Ble; ¢) is the open ball centre e and radius ¢
with respect to the metric d. (This limit clearly exists or is c0.)

PROOF. By Theorem 8.6 we have h,,,(T) < h(T). Suppose d is a left invariant
metric on G. Put D,(x,&, T) = (k25 T *B(T*x; ¢). By induction we shall
show that T~ "B(T“x g=x"(4" "B(e ¢)). It is true for k = 0 by the in-
variance of the metric d. Assuming it holds for k we prove it for k + 1:
T~ ®+*DB(T**x;e) = T~ YT *B(TXTXx); ¢)

=T YTx- A *Ble;¢)

=x-(A"**UB(e; ¢).
Hence D,(x,&, T) = x - [ iy A"*B(e;€) = x - D,(e,¢, A) and

m(D,(x,¢, T)) = m(D,(e, ¢, A)).

Let ¢ > 0. Let ¢ = {Ay,...,A,} be a partition of G into Borel sets of diam-
eter <e. If xe()}25 T 7/4;; then ()j2§5 T™'A;, < x. D,(e,¢ A), since if
ye ;=6 T4, then TV(x), T’( y)€ A;. and hence yeT” IB(T’x; €) Vj, and
SO yeD(xsT)—x 'D,(e, ¢, A). Thus m(ﬂ;' o T774;) < m(D,(e,¢, A)) and
taking logarithms we see that

i e )

i0,...s in-1=1 J

n—1
m( N T‘fA,.j> logm(D, (e, ¢, A))
j=0

Therefore

h,(T) > h, (T{)—llmnH (\/ T f@)

h— o0

> lim sup I: —% logm(D,(e, ¢, A))].
Since ¢ was arbitrary we have
h,(T) > lim llmsupl:—1 logm(D, (e,s,A)):l.
=0 n

(The limit clearly exists.) Consider now an (n, ¢)-separated set E, with respect
to T, having maximal cardinality. Then

U Dux,&/2,T)= | x'D,(e,&/2,A)

xeE xeE
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is a disjoint union because of the choice of E. Therefore

su(e, X) - m(D,(e,¢/2,4)) < 1
and so
1

m(D (e, g/2, A))

Therefore s(e, X, T) < limsup, [ —(1/n)logm(D,(e,¢/2, A))], and letting ¢ >
0 we see that

Sn(g’ X) S

h(T) = hy(T, X) < lim lim sup[—— logm(D,(e,€/2, A))]
< h,(T).
Thus

h,(T) = h(T)—hmhmsup[——logm( (e,a,A))].

=0

This expression also equals h,(A4) and h(A) since the right hand side is
independent of a. O

The formula

h(T) = lim lim sup [ ! logm(D, (e, ¢, A))]

=0 n

illustrates how h(T) measures “the amount of expansion” in T.

We shall now compute the topological entropy (and hence by Theorem
8.11 the measure theoretic entropy) of affine transformations of finite-
dimensional tori. Recall (§0.8) that we can view the p-torus K” either multi-
plicatively as K x K x -+ x K (p factors) or additively as R?/ZP. Each
endomorphism A4 of K” onto K? is given, in additive notation, by

A(x + Z?) =[A] - x+ Z? xeR?,

where [A] is an p x p non-singular matrix with integer entries. [A4] de-
termines a linear transformation A of R” and n4 = An where n:R” - K?
is the natural projection given by n(x) = x + Z”.

Let ||-|| denote the usual Euclidean norm on R?. We define a metric d
on RP/ZP by

dx +ZP,y+ ZP)= inf ||x — y + 0] x, yeRP"
ve ZP

The metric d is left and right invariant and for every x € Rn maps the ball
of radius £ about x in R” isometrically onto the ball of radius § about 7(x)
in R?/ZP.

The next theorem deals with such a situation and asserts that hy(A4) =
h,(A) in this case, where d denotes the metric on R? induced by the Euclidean
norm ||-||. (Since ||Ax — Ay|| < ||A||-||x — y|| we know 4 € UC(R",d).) This
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will equate the problem of calculating the entropy of 4 to that of calculating
the entropy of 4.

Theorem 8.12. Let (X, d), (X, d ) be metric spaces and n:X — X a continuous
surjection such that there exists 6 > 0 with

”lB(i 5)'3(55' 0) - B(n(X); )

an isometric surjection for all seX. If TeUC(X,d) and Te UC(X,d)
satisfy 1T = Tn then

ho(T) = ha(T).

Proor. If K is compact in X and diam(K) < & then n(K) is compact in X
and diam(n(K)) < é. Every compact subset of X of diameter < is of this
form. Let ¢ > 0 be such that ¢ < 6 and if d()? ¥) < ¢ then d(Tx, Ty) < 6.

Suppose E = K is an (n, ¢)-separating set with respect to 7. We first prove
that n(E) is an (n, &)- -separating subset of n(K) with respect to T. To prove
this, let % # § belong to E. Then n(%) # n(§). Let i, be chosen so that
d(T'x, T'y) < e if i<i, and (TP"'x, T*1%) > ¢. By our choice of &,
d(To*1%, T*15) < § and so

d(T10+ ITI(X), Txo+ 1 (y)) _ (T10+ 13 Tzo+ ly) > e
Thus n(E) is (n, ¢)-separated with respect to T. Therefore
s,(e, K, T) < s,(e,n(K), T).

To prove the converse inequality, suppose E is an (n, ¢)-separated subset
of n(K) = X with respect to T, where K is compact and of diameter <.
Let E=n"Y(E)n K. Then E is an (n,¢)-separated set with respect to T
since if d(T'%, T'¥) < ¢ where X, j € E then d(T'n(X), T'n(7)) < e. Hence

s,(e,n(K), T) < s,(e, K, T).
Therefore s _
s\e, K, T) = s,(e,n(K), T)
and hence
hi(T, K) = hy(T, n(K)).
By Corollary 7.5.1 _
hi(T) = hy(T). O

Corollary 8.12.1. If A:K?—>K”? is an emiomorphism then hy(A) = hz(A)
where A is the linear map of RP covering A, d is the metric on RP determined
from the Euclidean norm and d is any metric on KP.

We shall now proceed towards calculating the entropy of a linear map
of R”.
We first show the analogue of Theorem 8.11.
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Lemma 8.13. Let A:R? — R? be linear, let m denote Lebesgue measure on
R? and let p be a metric on R® determined by a norm. Then

h,(A) = lim lim sup [ 1 logm(D,(0,¢, A))]

e=>0 n-wo
where

D,(0,¢,A) = nhl A7'B,(0;¢) and B,(0;¢) = {x € R?|p(x,0) < &}.

Also, h,(A) does not depend on the norm chosen.

Proor. Since all norms on R” are equivalent they induce uniformly equiv-
alent metrics on R? so by Theorem 7.4 h,(4) = hy(A), where d is the Euclidean
distance. Also by comparing balls in different norms it is clear that the
expression given in the theorem is also independent of the norm. We may
as well suppose p is the Euclidean distance. The proof is similar to that of
Theorem 8.11.

We have m(A(B)) = |det Ajm(B) VB € #(R”) (Parthasarathy [2], p. 176).
Let K be a compact subset of R? with m(K) > 0. If F (n,¢) spans K then

K c U D,,(x,28, A) = U X+ D"(O, 28,A)’
xeF xeF

where
n—1

D,(x,e,A) = (| A7'B,(A/(x);¢)..

i=0
Therefore m(K) < r,(e, K)m(D,(0, 2¢, A). This gives
m(K)
e R) 2 5,0,20, )
and hence h,(T) > r(e, K, A) > limsup,_, ,, —(1/n)logm(D,(0, 2¢, A)). There-
fore

h,(T) > lim lim sup —% log m(D,(0, 2¢, A)).

e20 n—ow

Let K, be the closed p-cube with centre 0 € R? and side length 2q. If E
is a (n,¢) separated subset of K, then Uxe e D,(x,¢/2, A) is a disjoint union
and (JicgD,(x,8/2,4) = | Jrex(x + D,(0,£/2,A)) = K, .. Therefore

su(e, Kg) - m(D,(0,8/2, A)) < 2°(q + )"

and so s(e, K,, 4) < limsup,,_, , —(1/n)logm(D,(0,¢/2, A)). If K is any com-
pact subset of R? then K = K, for some g so

s(e, K, A) < s(e, Ky, A) < lim sup —% m(D,(0, g/2, A)).

n— oo
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Therefore

h,(A) = sup 11m s(e, K, A) < lim lim sup —— log m(D,(0, ¢, A)). |

e=>0 n—ow

Theorem 8.14. Let V be a p-dimensional vector space, let A:V — V be linear
and let p be a metric on V induced by a norm on V. Then

hp(A) = Z(i:ll.-|> 1) 10g|/1i|,

where A4, . .., A, are the eigenvalues of A. (Some of the A; can be equal.)

PROOF. Write V as a direct sum of two subspaces V = E; @ E, where
AE;c E;, i=1,2and A; = A|g, has all its eigenvalues with modulus greater
than 1 and 4, = A| £, has all its eigenvalues of modulus less than or equal to
1. By choosing a basis in E; we can suppose E; = R”. Let m; be the Lebesgue
measure on RP{(i = 1,2). We can consider V as R = RP* @ RP>and m; x m,
is the Lebesgue measure on R”. Let p; be the Euclidean metric on RPi(i = 1,2).
Then d((xy,X,), (y1,y2)) = max;__, pi(x;, y;) gives the metric on R? coming
from the norm ||(xy, x,)|| = max(||x,|s,||x||,) where ||-||; is the Euclidean
norm on RP. By Lemma 8.13, using d to evaluate the expression given in
Lemma 8.13, we have

1 1
h,(A) = lim lim sup [—— logm,(D,(0,¢e,A4,)) — " log m,(D,(0, a,AZ)):l

=0 n-oo
where D,(0,¢,4;) = ()}=5 A7 ‘B, (0; ). We have
my(D,(0,¢, A,)) < my(A7 ™ VB, (0; ¢)) = [det A;| =~ Dm,(B,,(0; &)
and m,(D,(0,¢, A,)) < my(B,,(0; ¢)) so that

1 1
- logm,(D,(0,¢,4,)) — . logm,(D,(0,¢,A4,)) > < >log|detA |
1
—, logm,(B,,(0;¢))

1
- logm,(B,,(0;¢)).

Therefore h(A) > log|det A;| =Y 1, > 1,108|4-

We now prove the opposite inequality. By the Jordan decomposition
theorem we can write V' as a direct sum of subspaces, V=V, ® - @V,
where AV; c V; and the eigenvalues of 4; = A|y, all have the same absolute
values 7;, 1 < i < k. By choosing a basis in V; we can suppose V; = R?* and
then V= RP = R* @ - - - @ RP-. Let m; denote Lebesgue measure on R?* and
then m; x m, x - -+ x my is Lebesgue measure on R?. By Lemma 8.13, if p;
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denotes the metric on R induced by any norm on R”* and if p is the metric
on R? induced by any norm on R” we have

h,(4) = lim lim sup Z ——logm( .0,¢,4)))

£~20 n—oo =

where
n—1
Dn(o’ &, Ax) = ﬂ Al_ij,(O: 8)'
j=0
We shall show ’

lim lim sup — = logm (D,(0,¢, 4;)) < max{0, p;logt;}

£e~0 n—ow

and this will complete the proof.
Fix i and let 6 > 0. Let ||-||; denote the Euclidean norm on R” and define

a new norm on R? by
5 A
IHXHI - (‘L' + 5)n

This series converges by the n-th root test since if x # 0

e T s 7
(t;+o" " 1+ T+ 6

Since

= ”A"”i =1
< . = .
”x”‘ - |”X”I < ”x“l ngo (ri + 5))1 ¢ HXH‘

the two norms on R” are equivalent. Also |||Ax||| < (z; + 8)|||x]|| If B(0; ¢)
denotes the open ball of centre 0 and radius ¢ in the norm |||-||| then

-j . ._
A7'B,(0;¢) o B, <0’(T.‘ n 5)]).

If D,(0,¢, A;) is computed using the norm |||-||| on R?* we have

€ cé
D A)> B, (0; ——— ST
n(O,Ea z)D 2< ) (Ti+ 5)n_1>DB<0,(T5+6)"_1>

if 7, + 0 > 1, and D,(0,¢, A;) © B,(0; &) > B(0; ce) if t; + 6 < 1. Here B(0; ¢)
denotes the Euclidean ball. Therefore

m{(D,(0,¢, 4;)) = my(B(0; ce)) ift;+6>1

1
X i(n—1)
and (t; + 8)?
m;(D,(0,¢, 4;)) > my(B(0; ce)) ifr; +5< 1.
Hence

lim sup —% logm;(D,(0, ¢, A;)) < max(0, p;log(t; + J)).

h— oo
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Since this is true for each 6 > 0 we have

1
lim sup - logm(D,(0,¢, A;)) < max(0, p;log ;). O

n— oo
We can now deduce the result we set out to prove.

Theorem 8.15. Suppose T:K? — KP? is an affine transformation, Tx = a - A(x),
where a € K? and A is a surjective endomorphism of KP?. If m is Haar measure
then

WT) = h,(T) = h,(4) = h(A)= 3 log|

(i) 4| > 1}

where 44, ..., A, are the eigenvalues of the matrix [ A] which represents A.

ProOF. We know by Theorem 8.11 that
h(T) = h,(T) = h,(A) = h(4)

and by Corollary 8.12.1 that h(4) = h(A), where A denotes the covering
linear map of 4. Since 4 is represented by the matrix [ A] in the natural basis
the formula for h(A4) follows from Theorem 8.14. O

§8.5 The Distribution of Periodic Points

If a continuous map T:X — X has a unique measure with maximal entropy
one expects this measure to have strong properties and tie in with the other
dynamical behaviour of T. We discuss how, for some maps T, this measure
is connected with periodic points.

If T: X — X is a continuous transformation of a compact metrisable space
then N,(T) will denote the cardinality of the set F(T) = {x € X|T"(x) = x}.
We have

Theorem 8.16. If T:X — X is an expansive homeomorphism of a compact
metric space then N,(T) < oo Vn > 1 and h(T) > lim sup,_, , (1/n)log N (T).

PRrOOF. Let 6 be an expansive constant for T. If T"x = x, T"y = yand x # y
then if d(TV(x), T/(y)) < 6,0 <j < n — 1, then d(T’(x), T/(y)) < 6Vj e Z and
hence x = y. Therefore the set F,(T) = {x] T"x = x} is (n, d) separated and so
N(T) < s,(X,8) < oo. Hence

lim sup % log N,(T) < lim sup % logs,(X,0) < h(T). O

h— oo n— oo

We are interested in the distribution of the periodic points so we make the
following definition.
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Definition 8.4. Let T: X — X be a continuous map of a compact metrisable
space with N (T) < oo Vn > 1. A measure pe€ M(X, T) describes the dis-
tribution of the periodic points of T if

1
5. —pu in M(X).
Nn(T) xsFZ,,(T) )

Theorem 8.17. Suppose T:X , — X 4, is a two sided topological Markov chain
where A is an irreducible matrix. Then h(T) = lim,,_, ., (1/n)log N(T) and the
unique measure with maximal entropy describes the distribution of the periodic
points of T.

Proor. If {x;}®, is a point of X 4 then it belongs to F,(T) iff x; = x;,,Vj € Z.
Therefore

a;

in-1lo

N,(T)= Z QigiyAiyiy, ~ " " Gy

iriz in-2in-1
00y eevs in-1=0

k
= trace of A" = ) A}

where 44, ..., 4, are the eigenvalues of 4. Therefore

Al
lim NWT) _ = lim '—;— =1
nsoo A" nsoo \ A" \

where 1 is the largest positive eigenvalue of 4 which is simple because A4 is
irreducible. Hence

lim 1 log N(T) =log 4 = h(T).

n—o N

Let u denote the unique measure with maximal entropy (see Theorem
8.10; we use the same notation as there). To show

1

P = O, -1
Nn(T) xe %(T)

1t suffices to show _ffd,u,, — (fdp for functions of the form f = y. where
= {{xl} w|Xy =1y ..., X, =i} for some r, s (r < 's) and some i,, ..., i

ThlS is because finite lmear combinations of such functions are dense in
C(X 4) by the Stone—Weierstrass theorem. Let f = y-beas above.Ifn > s —r

k—1
_ . .. -1
ff dp, = > Biripsy " iy 1isisiger " Firr i NalT)
Is41renns intr-1=0
“ e n+r—s PR
iy 4 4 a,_,i(4 Jigie _ Gigipss Qi i Wi Vi,
N”( T) n)'n /Is -r

by the above and Theorem 0.17. Therefore | f du, — [ f du. O
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A special case of this theorem says that the (1/k, . . . , 1/k) product measure
describes the distribution of the periodic points of the two-sided shift.
The corresponding result holds for automorphisms of tori:

Theorem 8.18. Suppose A:KP? — K? is an automorphism of K" which is
expansive (i.e. [ A] has no eigenvalues of absolute value 1). Then h(4) = lim,,_, .,
(1/n)log N ,(A) and the Haar measure m describes the distribution of the periodic
points of A.(The same conclusions hold when A is merely ergodic but the proof
is more delicate.)

We refer to Bowen [4] for the proof of the second part and to Bowen [5]
and §22 of Denker, Grillenberger and Sigmund [1] for a discussion of
generalisations to a wider class of homeomorphisms. We now prove that
h(A) = lim,,_, , (1/n) log N ,(A).

PRrOOF. In the proof we shall use the fact that if B: K — K” is an endomor-
phism of K? onto K” then the kernel of B contains |det [ B]| points. (This is
because the image B(I) of the unit square I of R? under the linear map B has
Lebesgue measure |det [ B]| and so when B(I) is reduced mod Z” each point
of I is covered by |det[B]| points of B(I)).

Since A is expansive, A" — I:K? - K”? (using additive notation) is an
endomorphism of K? onto K” with corresponding matrix [A"—1]=[A]"—1I.
Therefore det[ A" — I] [17=1 (A} — 1) where Ay, . . ., 4, are the eigenvalues
of [4]. Then N,(A) is the cardmahty of the kernel of 4" — I so N,(A4) =
[1P=1 |4 — 1| and

1 LA |
—logN,(A) = ). —log|A — 1.
n i=1 n

If |2;| > 1 then
1 1 -
- log|2y — 1] = - [log|A|" + log|l — A7 "[] — log|A,].
If |4;] < 1 then (1/n)log|A} — 1| - 0. Hence
1
lim —logN,(4)= ) log|| = h(A). O

n—~o N {i:]4 > 1)

§8.6 Definition of Measure-Theoretic Entropy
Using the Metrics d,,

Let (X,d) be a compact metric space and let T:X — X be a homeomor-
phism. In §7.2 we introduced the metrics d, on X by d,(x, y) = maXg ;<p-1
d(T'(x), T'(y)). We then defined r,(¢, X) to be the minimum number of ¢-balls,
in the d, metric, whose union covers X, and we showed A(T) = lim,_,
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limsup,_, ,, (1/n)logr,(e, X) = lim,_, o liminf,_, ., (1/n)logr,(e, X). A. B. Katok
has given an analogous description of measure-theoretic entropy.

Theorem 8.19. Let T:X — X be a homeomorphism of the compact metric
space (X,d). Let me M(X, T) and let m be ergodic. For ¢ >0, § >0 let
ru(€, 8, m) denote the minimum number of ¢-balls in the d, metric whose union
has m-measure more than or equal to 1 — 6. Then, for each 6 > 0, we have

1 .
h,(T) = lim lim sup — logr,(e, 8, m) = lim lim inf % logr,(e, 6, m).

e-20 n-oo N £20 n—o

We refer to Katok [1] for the proof.



CHAPTER 9
Topological Pressure and Its

Relationship with Invariant Measures

Let T:X — X be a continuous transformation of a compact metric space
(X.d). Let C(X,R) denote the Banach algebra of real-valued continuous
functions of X equipped with the supremum norm. The topological pressure
of T will be a map P(T, *):C(X,R) — R U {00} which will have good prop-
erties relative to the structures on C(X, R). It contains topological entropy
in the sense that P(T,0) = h(T) where 0 denotes the member of C(X,R)
which is identically zero. A generalisation of the variational principle of §8.2
is true and this sometimes gives a natural way of choosing important members
of M(X,T). In this theory ideas from mathematical statistical mechanics
are used and the theory has important applications to other fields. We shall
mention in §10.1, one important application to differentiable dynamical
systems.

The concept of pressure in this type of setting was introduced by Ruelle [1]
and studied in the general case in Walters [3].

§9.1 Topological Pressure

Let (X,d) be a compact metric space, C(X, R) the space of real-valued con-
tinuous functions of X and T:X — X a continuous transformation. We
shall use natural logarithms. The definition of pressure can be given by using
open covers or spanning sets or separated sets. Since X is compact we can
generalise the definition of h(T) given in the remarks following Corollary
7.5.2. For f € C(X,R) and n > 1 we denote Y '3 f(T'x) by (S, f)(x).

207
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Definition 9.1. For f € C(X,R),n > 1 and ¢ > 0 put

QuT.f, &)= inf{ Y. €)X Fis a (n, ¢) spanning set for X }

xeF
Remarks

(1) 0 < QT f,€) < ||e]|ru(e, X) < oo (see Remark (1) of §7.2).

(2) Ifal <é then Qn(T:faal) = Qn(T’f: 82)-

(3) QuT,0,¢8) = r,(e, X).

(4) In Definition 9.1 it suffices to take the infinium over those (n, ) span-

ning sets which don’t have proper subsets that (n,¢) span X. This is because
PO IC Y

Definition 9.2. For f € C(X,R) and ¢ > 0 put

O(T, f,e) = limsup % log Q (T, f,e).

n— oo
Remarks

(5) O(T.f,e)<||f||+r(e, X, T) < oo (see Remark (1) and Theorem 7.7(ii)).
(6) If e, < e, then Q(T, f,&,) = Q(T, f, ¢,) (by Remark (2)).

Definition 9.3. If f € C(X, R) let P(T, f) denote lim,_, Q(T, f, ¢).

Remarks

(7) By Remark (6), P(T, f) exists but could be co.

Definition 9.4. The map P(T, -): C(X,R) - R U {00} defined above is called
the topological pressure of T.

Clearly P(T,0) = h(T). We shall obtain some equivalent ways of giving
the definition.

Definition 9.5. For f € C(X,R),n > 1 and ¢ > 0 put

PLT,f,e) = sup{ Y, €5DX)|E is a (n,e) separated subset of X }

xeE

Remarks

(8) Ife; < e, then P(T,f,e,) > P(T,f,¢,).

9) P(T,0,¢) = s,(g, X).

(10) In Definition 9.5 it suffices to take the supremum over all the (n,¢)
separated sets which fail to be (n, ¢) separated when any point of X is added.
This is because e+ > 0,

(11) We have Q,(T, f,¢) < P(T, f,¢). This follows from Remark (10) and
the fact that a (n, ¢) separated set which cannot be enlarged to a (n, ¢) separated
set must be a (n,¢) spanning set for X.
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(12) If 6 >0 is such that d(x,y) < ¢/2 implies |f(x) — f(y)| <& then
P(T.f,e) < €°QT, f,e/2).

PRrOOF. Let E be a (n,¢) separated set and F a (n,¢/2) spanning set. Define
¢:E — F by choosing, for each x € E, some point ¢(x) € F with d,(x, ¢(x)) <
¢/2 (using the notation d,(x, y) = maxg<;c,—1 d(T'(x), T(y)). Then ¢ is in-
jective so

T S0 > § S0 > (min SnN$) - <snf)(x)> Y oS
yeF ye¢E xeE xeE

>e™ Y Snh),

xeE

Therefore Q (T, f,¢/2) > e ™P/(T, f,¢). O
Definition 9.6. For f € C(X,R) and ¢ > 0 put

1
P(T,f,¢) = limsup — log P(T, f, ¢).

L

Remarks

(13) Q(T, f,e) < P(T, f,¢) (by Remark (11)).

(14) Iféissuchthatd(x, y) < ¢/2implies|f(x) — f(y)| < dthen P(T, f,e) <
6 + Q(T, f,¢) (by Remark (12)).

(15) Ife; < &, then P(T, f,¢e,) = P(T, f,¢&,).

Theorem 9.1. If f € C(X,R) then P(T, f) = lim,_,, P(T, f,¢).

ProOF. The limit exists by Remark 15. By Remark 13 we have P(T, f) <
lim,_, P(T,f,e).

By Remark 14, for any 6 > 0 we have lim,_,, P(T, f,¢) < 6 + P(T,f) so
lim,_, P(T,f,¢) < P(T,f). O

To obtain definitions of pressure involving open covers we generalise
Theorem 7.7. We need the following definitions.

Definition 9.7. If f € C(X,R), n > 1 and « is an open cover of X put

qn(Tsfs CZ) = lnf{ Z inf e(Snf)(»")lﬁ

Bep xeB
is a finite subcover of \/?Z§ T ~'a} and
PulT.f o) = inf{ Y. sup eS| g
Bep XeB
is a finite subcover of \/{Z¢ T~ 'a}.
Clearly q,(T, f,a) < p(T, f, ).
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Theorem 9.2. Let T:X — X be continuous and f € C(X,R).

(i) If o is an open cover of X with Lebesgue number 6 then q,(T,f,o) <

04T, f,6/2) < P(T., f,/2).
(i) If €¢>0 and vy is an open cover with diam(y) < ¢ then QT,f,¢) <

P(T,f,e) < pT.1,7)

PROOF. We know from Remark 13 that Q,(T, f,¢) < P,(T,f,e¢) for all ¢ > 0.

(i) If F is an (n,6/2) spanning set then X = (),.r ()iZo T 'B(T'x; 6/2).
Since each B(T'x;d/2) is a subset of a member of & we have g,(T, f,«) <
Y cer €5 and hence q,(T, f, o) < QT f,6/2).

(ii) Let E be a (n, ) separated subset of X. Since no member of \ /725 T~y
contains two elements of E we have Y . g e < p(T,f,y). Therefore

P(T.,f,e) < pT., f,y). O

Remarks
(16) If o, y are open covers of X and a < y then q (T, f,a) < q(T,f,7).
(17) If d(x,y) < diam(a) implies |[f(x) — f(y)| < then p T, f, @) <
enéqn( T’ f’ a)

Lemma 9.3. If f € C(X,R) and o is an open cover of X then
1

lim — lOg pn(Tafa (X)
n

h— o0

exists and equals inf, (1/n)log p(T, f, ).

PRrROOF. By Theorem 4.9 it suffices to show p, . (T, f, ) <p T, f, &) - p(T., f, ).
If B is a finite subcover of \ /72§ T ‘o and y is a finite subcover of \/¥Zg T 'a
then v T~ "y is a finite subcover of \/¥2¢™! T~ 'a, and we have

Y sup eSn® < ( Y sup e(&.f)(x))( Y sup e(skf)(x>>_
DefvT-ny xeD Bep xeB Cey xeC
Therefore pn+k(Tﬁf’ O() < pn(T,f5 CX) ' pk(Taf, O(). D

The following gives definitions of pressure using open covers.

Theorem 9.4. If T:X — X is continuous and f € C(X,R) then each of the
following equals P(T, f).

(i) lim,.,q [sup, {lim,_, (1/n)log p(T, f,0)| « is an open cover of X with
diam(a) < 8}].

(i) limy, , [lim,_, , (1/n)log p(T, f, )] if {0} is a sequence of open covers
with diam(a,) — 0.

(iii) lim,_ o [sup, {liminf,_ , (1/n)log (T, f,o)|a is an open cover of X
with diam(x) < d}].



§9.1 Topological Pressure 211

(iv) lims_, ¢ [sup, limsup,._,,, (1/n)logq,(T, f,o)|o is an open cover of X
with diam(e) < 6}].

(v) limy_, , [limsup,_  (1/n) q(T, f, )] if {o} is a sequence of open covers
with diam(a,) — 0.

(vi) sup, {limsup,_,, (1/n)logq,(T, f,a)| is an open cover of X}.

(vii) lim,_ o liminf,_, . (1/n) Q.(T, f,¢).

(viii) lim,_ ¢ liminf,_ . (1/n)log P(T,f,¢).

PROOF

(i) If 6 > 0 and y is an open cover with diam(y) < é then P(T,f,d) <
pA T, f,7) (Theorem 9.2(ii)). Therefore

o1
lim ;logp,,(T,f, Py

n— oo

P(T,f,0) < sup{

is an open cover of X with diam(y) < ¢}, using Lemma 9.3. Therefore P(T, f)
is no larger than the expression in (i).

Ifais a cover and § is a Lebesgue number for a then q,(T, f,®) < P (T, f,/2)
by Theorem 9.2(). Also if t, = sup{|f(x) — f()|:d(x, y) < diam(«)} then
AT, f,0) < e"q,(T,f,a), by Remark 17. Hence

pT, f,0) < PT, f,5)2)
SO
lim L log pu(T, f,%) < 7, + P(T, /),

n— o0

and

lim (sup{lim %log pAT, f,a)|diam(x) < n}) < P(T,f).

n—0 a n—oo

Therefore (i) is proved. The same reasoning proves (ii).
(iii) We know q(T, f, @) < pT, f, «) for all a. Also if

1, = sup{|f(x) — f(y)|:d(x, y) < diam(a)} then p/(T,f, o) < €"™q,(T, f, )
(Remark 17). Therefore

e_ntapn(T’f’ (X) < qn(Tafa O() < pn(T’f’ CX)
SO

1
—1, + lim %logp,,(T,f, o) < liminf; log ¢,(T, f, ®)

< limsup logq,(T, f, %)
o1
< lim " log pu(T, f, &)

n— oo

The formulae in (iii), (iv), and (v) follow from (i) and (ii).
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(vi) Let « be an open cover of X and let 2¢ be a Lebesgue number for a.
By Theorem 9.2 q,(T, f, o) < Q(T, f, ¢) so that limsup,_, , (1/n)g T, f, o) <
Q(T,f,¢) < P(T,f). Therefore the expression in (v) is majorised by P(T, f).
The opposite inequality follows from (iv).

(vii) and (viii) Let o, denote the cover of X be all open balls of radius 2¢
and y, denote any cover by balls of radius (¢/2). Then, by Theorem 9.2 and
Remark 17,

e-"uepn(T’f’as) < qn(Tafs o‘e) < Qn(Tafs 8) < Pn(Tsf’ 8) < pn(T’f: YS)

where 4, = sup{|f(x) — f(y)|:d(x, y) < 4¢}. Then (vii) and (viii) follow by
taking lim infs in this expression and using (ii). O

Remarks

(18) For some examples sup{lim,_, ,, (1/n) log p,(T, f, &)|a is an open cover
of X} is strictly larger than P(T, f).

(19) From (vi) of Theorem 9.4 we see that P(T, f) does not depend on
the metric on X.

As one may expect, from our knowledge of topological entropy, the
definition of pressure can be simplified for expansive homeomorphisms. We
shall need the following lemma.

Lemma 9.5. If T:X — X is a continuous transformation of a compact met-
risable space and o is an open cover of X then for k >0 and f € C(X,R)

1
llmsup log q,(T, f,®) = limsup — logq,,(Tf \/ T oc>

n— oo n— oo i=0

and lim,,.., (1/n) log p(T, f, &) = lim, . ., (1/n) log p(T. f, \/¥=o T~ '0). If T'is
a homeomorphism and k,m > 0 then these formulae hold with \/¥2§ T '«

replaced by \/¥- _,, T a.

PROOF. One readily gets
e W DIllg (T, f, ) < q"<Tf \/ T~ oz) < e**+DIflg (T, f, )
i=0
and
e'(“+”||f||p,,+k(T,f, ) < p,,(T,f, \k/ T'iot> < ekt 1)||f”p,,+k(T,f, ).
i=0

The first results follow from this. To obtain the second result it suffices
to show

limsup logq,(T,f, T *p) = llmsup logq,(T, f, B)

n—o n— oo
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and

lim log p(T,f, T~*f) = lim . 1og p(T. /)

when T is a homeomorphism and f is an open cover of X. Since y is a finite
subcover of \/7Z§ T~'B iff T~ 'y is a finite subcover \/7—; T~‘f we have

Z inf eSn/® .
ne
TSP > inf{~S22°¢ |y s a finite subcover of \/ T7'B
—1p) = : SaTO)
T, f, T™*P) inf e i=0
me ng yeT-1C '
Y inf &S/
. Cey xeC . . h —i
= inf S inf ST y is a finite subcover of \/ T~
e i~o
Cey xeC '
inf oSnS®) -
> inf mln fes—f(T_lx) b isa ﬁnite subcover of \/ T—iﬁ
Y,
xeC ‘
S o2,

A similar proof gives
-1
qn(T5f5 T B) > e—2||f||

qn(T5f’ ﬁ)

so the result follows. The result for p, follows by a similar proof. O
The following result generalises Theorem 7.11.

Theorem 9.6. Let T:X — X be an expansive homeomorphism of a compact

metric space (X, d).

(i) If o is a generator for T then

P(T,f) = lim 1logp,,(T,f,oz)

n— oo

= llmsupllogq,, T,f,0) VfeC(X,R).

n—oo

(i) If 6 is an expansive constant for T then P(T,f)= P(T,f,d,) =
Q(T, f, ) for all 64 < 6/4 and all f € C(X,R).

PROOF

(i) Let o be a generator for T. By Theorem 5.21 we have

k
diam< v T"oc) -0

i=—k
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and so by Theorem 9.4(ii)

P(T,f) = lim lim —logp,,(Tf \/ T~ oc)
k—o n—>w i=—k
An application of Lemma 9.5 gives the desired result. The formula involving
g, is proved in a similar way using Theorem 9.4(v) and Lemma 9.5.
(ii) Letd, < 6/4 and choose x,...,x;,so that X = U‘,;l B(x;;(6/2) — 28,).
The cover a = {B(x;; 5/2)|1 < i < k} has 26, for a Lebesgue number so by
Theorem 9.2

lim sup ! log g (T, f,a) < lim sup logQ (T, f,00)

n— oo n— oo

<11msup—logP (T, f,00) < P(T, f).

n— oo

The result follows by (i) since « is a generator. O

We can use this to calculate P(T,f) when T is the two-sided shift on
X=[]2,Y, Y={0,1,...,k— 1}, and f depends only on the 0-th coor-
dinate i.e. f({x,}) = a,, where aq, a,, ..., a,—; € R. If o denotes the natural
generator then q,(T,f,a) = p(T,f,0) = (e + -+ e* )" so P(T,f)=
log(e®™ + -« -+ + ™).

§9.2 Properties of Pressure

We now study the properties of P(T, -): C(X,R) - R u {c0}. In particular
we see that either P(T, -) never takes the value oo or is identically oo.

Theorem 9.7. Let T:X — X be a continuous transformation of a compact
metrisable space X. If f, g € C(X,R), ¢>0andc € Rthenthe following are true.

(i) P(T,0) = h(T).

(i) f < g implies P(T, ) < P(T,g). In particular h(T) + inff < P(T, f) <
h(T) + supf.

(iii) P(T, -) is either finite valued or constantly co.

(iv) |P(T,f,e) — P(T,g,¢)| < ||f — ¢l|, and so if P(T, ") < oo, |P(T,f)—

P(T.9| < |If =9l

(v) P(T g) is convex, and so if P(T, ) < oo then P(T, ) is convex.

(vi) Tf +¢)=P(T,f)+c

(vii)) P(T, f +g° T —g) = P(T, f).

(viti) P(T, f + g) < P(T,f) + P(T,9g).

(ix) P(T,cf) < cP(T,f)if ¢ > 1 and P(T,cf) > cP(T,f)ifc < 1.

() |P(T.f)]| < P(T,|f]).
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PROOF. Several times in the proofs we shall use the simple inequality
supa; _ a;
supb; =" <bj>

when (a;), (b;) are collections of positive real numbers.

(i) and (ii) are clear from the definition of pressure.
(i) From (ii) and (i) we get
WT)+inff < P(T,f) < h(T) + sup f

so P(T,f) = o0 iff h(T) = oo.

(iv) By the inequality mentioned at the beginning of the proof we have

‘ Y elSn )
Pn(T5f58) < xeE

P,,(T, g, 6) = sup Z e(Sng)(x)

xeE

E is a (n,¢) separated set

eSn)=)

< sup{max ————
{ coE €O

E is a (n,¢) separated set}

< el

This proves (iv).
(v) ByHolder’sinequality, if p € [0, 1] and E is a finite subset of X, we have

p 1-p
Z ePSnNx) +(1 =~ p)Sng)x) < Z e(Snf)(x)> <Z e(Sng)(x)> .

xeE xeE xeE

Therefore P,(T, pf + (1 — p)g,e) < P(T, f,&)" - P,(T,g,¢)' ~* and (v) follows.
(vi) is clear from the definition of pressure.
(vii) We have

Pn(T’f+g° T—g,ﬁ)

= sup{ Y, @S+ eI™) =6 E j5 a (n, ¢) separated set}

xeE

so that
e 2P (T, f,e) < P(T, f+go T —g,¢) < eIP(T, f,e).

The result follows from this.

(viii) This follows because P(T, f + g,¢) < P(T, f,¢) - P(T,g, ¢).

(ix) If a,, . . ., a; are positive numbers with ) ¥_, a; = 1 then Y ¥_, af < 1
ifc > 1,and ) ¥_, af > lifc < 1. Therefore, if E is a finite subset of X we have

c
Y Snh) < ( y e(snf)<x>> ife>1

xeE xeE

and
c
Y a0 > ( ¥ e(snfxx)) ife< 1.
xeE xeE
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Therefore P(T,cf,e) < (PAT, f,e)) if c>1 and P,(T,cf,e) = (P(T,f,¢e))
ife< 1.

(x) Since —|f|<f<|f|wehave by (ii), P(T, — | f|) < P(T, f) < P(T,| f]).
From (ix) we have — P(T,|f]) < P(T, Ifl)bOlPTf)|<PT|f|) O

We now investigate how P(T, -) depends on T. Some other properties,
that we could prove now, are given after we prove the variational principle
in §9.3.

Theorem 9.8. Let T:X — X be a continuous transformation of a compact
metrisable space and let f € C(X,R). The following are true.

() If k>0 P(T% S, f) = kP(T, f). (Here (Sef)(x) = Y6 f(T'x).)

(ii) If T is a homeomorphism P(T™%, ) = P(T, f).

(iii) If Y is a closed subset of X with TY < Y then P(T|y, f|y) < P(T, f).

(iv) If T;:X; - X; (i =1, 2) is a continuous map of a compact metrisable
space(X;, d;,)and if ¢:X, — X, is a surjective continuous map with ¢ T, = T,¢
then P(Tz,f) < P(Ty,fod)VfeC(X,,R). If ¢ is a homeomorphism then
P(T,, f)=P(Ty,f ° ) Vf € C(X,, R).

) If Ti:X;— X;(i=1,2) is a continuous map of a compact metrisable
space (X;,d}) and if fie C(X, R) then P(T, x T,,f; x f,) = P(Ty, f}) +
P(T,, f;) where fi x f,€ C(X{ x X,, R) is defined by (fy x f5)(x1,x;) =
fi(x1) + filx2)- :

PROOF

(i) If F is (nk,e) spanning for T then F is (n,¢) spanning for T*. Hence
0T S, f,e) < Qu(T, f,¢)so that P(T* S, f) < kP(T, ). To show the oppo-
site inequality we let ¢ > 0 and choose & > 0 so that d(x, y) < ¢ implies
max, ;-1 d(T'x, T'y) < &. If F is (n,d) spanning for T* then F is (nk,e)
spanning for T. Hence QT* S.f,8) > Q.(T,f,¢) and so P(T*S,f) >
Q(T*, S, f,8) = kQ(T, f, ¢). Letting ¢ go to zero gives P(T*, S, f) > kP(T, f).

(i) A set E is (n,¢) separated for T iff T""'E is (n,¢) separated for T~*
Also

Y SN0 = F IOV HAT Tk STy
xeE yeTn—1E

so P(T,f,e)= P(T™*, f,e) and P(T,f) = P(T" 1, ).

(iii) This is clear since a (n ¢) separated subset of Y is a (n, &) separated
subset of X.

(iv) Lete > 0andchoose § > 0so thatd,(x, y) < é implies d,(¢(x), p(y)) <
e. If F is (n, 8) spanning for T then ¢F is (n, ¢) spanning for T, and

T @D HIGTIOH QTIN5 § GO TWE ST > Q (T, f,6).
x€eF yedF
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Therefore P(Tlafo ¢) 2 Q(Tl’fo ¢9 5) 2 Q(TZ’f> 8) sO P(beo ¢) 2
P(Ty, f).
If ¢ is a homeomorphism then we can apply the above with Ty, T,, ¢, f
replaced by T,, T, ¢, f o ¢ respectively to give P(T,, f) = P(T4, f o ¢).
(v) Consider the metric on X, x X, given by d((xy,X,), (y1,)2)) =
max {d,(x,, y,), d(x3, y2)}. If F; is a (n, ¢) spanning set for X; then F; x F,
is a (n, &) spanning set for X; x X, with respect to Ty x T,. Also

n—1
Z exp( (f1 x o) (T x Tz)'(xhxz))
(x1,x2)e F1 X F i=0

n—1 n—1
~( 5 ewn('Z acrion))( 5 ew(y, Airin)

OuTy x Ty, fi % f5,8) < QT4, f1,8) - QT f3, ©).

Therefore P(T, x T, fi x fo) < P(Ty, fi) + P(Ty, fo).
If E; is a (n,¢) separated set for X; then E; x E, is a (n,¢) separated set
for X; x X,, so that

Pn(Tl X T2a.fl X f25 8) = Pn(Tla f17 8) ’ Pn(TZa fZa E)‘

so that

Since

1
limsup—r—lIOan(Tl X T2af1 X f276)

n— oo

. 1 . 1
> liminf - log P(T}, fi, €) + limsup ~ log P(T,, f>, €),
n

n»w N n— oo

Theorem 9.4(viii) gives P(T; x T,, fi x f3) = P(T4, f;) + P(T,, f>). O

§9.3 The Variational Principle

We now extend the variational principle of §8.2. This variational principle
was proved for some transformations by D. Ruelle [ 1] and then for all trans-
formations by P. Walters [3]. The proof we give here is similar to that of
Theorem 8.6 and is due to M. Misiurewicz [ 2]. Other proofs have been given
by M. Denker and R. Bowen.

We shall use the remarks given in §8.2 before the proof of Theorem 8.6.
We shall also use the following simple result.

Lemma 9.9. Let ay, . . ., a, be given real numbers. If p;> 0 and Y %_; p;=1
then

k k
Y. pila; — logpy) < log< Zl e"‘)
i=1 i=
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and equality holds iff
et
Di =%

o
j=1

PROOF. Let M = }%_, ¢%. In Theorem 4.2 put

OC,~ = e_l and x,~ = p_iA‘{‘.
M e’
Then

k
0=¢()< ¥ "’M”;u
i=1

M .
og (pM>
o
k
= Y p[logp; + logM — a;].
i=1

Therefore ) pi(a; — log p;) < log M, and equality holds iff (p;M/e*) is inde-
pendent of i i.e. p; = (e*/M). O

Theorem 9.10. Let T:X — X be a continuous map of a compact metric space
and let f € C(X, R). Then

P(T, )= sup{hu(T) + [ £au

uwe MX, T)}.

PRroOF

(1) Let pe M(X, T). We shall show h,(T) + [fdu < P(T, f). Let & =
{Ay, ..., A} be a partition of (X, #(X)). Let a > 0 be given. Choose ¢ > 0
so that eklogk < a. Since p is regular there are compact sets B; = 4; with
u(A)\B;) <&, 1 < j<k Letn be the partition n = {By, By, ..., B;} where
B, = X\| J%- B,. Then as in the proof of Theorem 8.6 H,(¢/m) < eklogk < a.
Let

b= min d(B;,B;)>0.
1<i#j<k
Pick 6 > 0 so that 6 < b/2 and so that d(x, y) < & implies | f(x) — f(y)| <.
Fix n and let E be an (n, 6) separated set with respect to T, which fails to be
(n, 0) separated when any point is added. Then E is also (n, §) spanning. If
C e \/iZ5 T 'n let a(C) denote sup{(S, f)(x)|x € C}. Then

n—1
H,l<.\/ T"n) fS fdu< 3 WO[-logu(C)+«(C)]
=0 Ce \/ T 'y
<log Y ¢© byLemma99.
Ce"\;/l T 'n
For each C e \/}Z§ T~ ' choose some x € C so that (S f)( ) a(C). Since
E is (n,8) spanning choose y(C) € E with d(T'x, T'y(C)) < 6,0<j<n-—1.
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Then a(C) < (S,.f)(¥(C)) + ne. Also each ball of radius § meets the closures
of at most two members of 77 so if y € E then {C € \/7Z§ T~ 'n| y(C) = y} has
cardinality at most 2". Therefore

Z MO —ne < Z eEnN©) <2 Z e(Snf)(y)
1

CE"\:/Tr] CE\/Tr] yeE
and so
log [ Y €9\ —ne<nlog2+logy 5N
Cen\:/‘ T ™' yeE
Hence

_H#C\;/; T"‘n>+ffdu_-H (\/ T- 11>+—r1;fsnfd,u

1
<e¢+log2+=log ) €S0
n yeE

<e+log2+- logP(Tf(S)

and therefore
h(T,n) + J.fd,u <& +1log2 + P(T,f,d)
‘ < e+ log2 + P(T, f).

Now h,(T,&) < h,(T,n) + H,(¢/n) (Theorem 4.12(iv)) so that h,(T,¢) +
_ffd/¢< 2a +log2 + P(T, f) and hence h,(T) + | fdu < 2a + log2 + P(T, f).
This holds for all continuous maps T and all f € C(X, R) so we can apply
it to T" and S,f =724 fo T to get n[h,(T) + [fdu] <2a+log2 +
nP(T, f) (by Theorem 9.8(i)). Since this holds for all n we have

h(T) + [ fdu< P(T. f).

(2) Let e > 0. We shall find u e M(X, T) with h,(T) + ffdu > P(T, f,e),
and this clearly implies sup{h,(T) + | fdu|u € M(X, T)} > P(T, f).

Let E, be an (n, ¢) separated set with

log Y €50 > logP(T,f,¢) — L.
yeE,
Let 0, € M(X) be the atomic measure concentrated on E, by the formula
Z eSS )(y)(;y

— YeEn
=Ty S

zeE,

Let u, € M(X) be defined by

1~ —i
M=o 2 0ne T
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Since M(X) is compact we can choose a subsequence {n;} of the natural
numbers such that

lim n—log P, (T,f,e)=P(T,f,¢)
joow By
and {u,, } converges in M(X) to some u € M(X). By Theorem 6.9 we know
(€ M(X, T). We shall show h,(T) + [ fdu > P(T,f,e).
By Lemma 8.5 choose a partition & = {4, ..., 4,} of (X, (X)) so that
diam(A4;) < e and pu(0A4;) = 0 for 1 < i < k. Since cach element of \/128 T7U¢
contains at most one element of E, we have

n—1
H.,n< A T‘i£> + [8.fds,

= Y o ({yDS.) = loga,({y})

yeEn
=log ) e®® by definition of ¢, and Lemma 9.9.
YeEn
Fix natural members g, n with 1 < g < nand as in Remark 2 of §8.2 define
a(j), for 0<j<q-—1, by a(j)=[(n - j)/q]- Fix 0<j<gq— 1. From
Remark 2(i) of §8.2 we have

a(j)—1

\/T E= VT <w+»\/T iEy\/ T

leS
and S has cardinality at most 2g. Therefore
n—1
log ) €S0 = H,,"<\/ T"f) + fS,,fda,,
yeE, j=0
a(j)—1 q-1
< Z H6"<T""’+” VT > ,"<\/ T"‘¢>+fs,,fdo,,
= i=0 keS
u(j) 1
Z H, .r- (rq+n<\/ T ) 2qlogk+fS fdo,.

Summing this over j from 0 to ¢ — 1 and using Remark 2(iii) of §8.2 gives
qlog % S0 < ZO H,.r- ,,(\/ T" ‘é) + 2q*logk + g J'S,,fda,,.
yeEn P
Now divide by n and use Remark (1) of §8.2 to get
%log Y eSO <H <q\:/; T"f) + 27612 logk + q ffd,u,,. (*)

yeE,

Because u(04;) = 0 all i we have by Remark 3 of §8.2 that

lim Hun, <q\—/1 T‘f) = Hu<q\_/1 T‘f).
i=0 i=0

Jj= oo
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So replacing n by n; in (*) we get
GP(T,f,e) < H, (q\_/: T'i§> +q [ fdu
Dividing by ¢ and letting g — oo gives
P(T,f,¢) < h(T, &) + ffdu < h(T) + ffdu. O

Corollary 9.10.1. Let T: X — X be a continuous map of a compact metrisable
space and let f € C(X,R). Then

() P(T, f) = sup {hu(T) ¥ f fdu|ueEX, T)}.

(ii) P(T,f) = P(Tln(T)af|Q(T))~
(iii) P(T,f) = P(Tln(:ﬁ0 r'x:f|f]o r'x)-

Proor. The proofs are simple generalisations of the proofs of the corre-
sponding statements in Corollary 8.6. O

The variational principle helps to calculate the pressure of some examples.
It follows readily from the variational principle (or it can be easily proved
from the definition of pressure) that if T is the identity map of X we have
P(T, f) = sup f. (The ergodic invariant measures for T are the Dirac delta
measures, J,, x € X, so the formula follows from Corollary 9.10.1(i).) The
following calculates P(T, f) when T is an ergodic rotation of a compact
metrisable group.

Corollary 9.10.2. If T:X — X is uniquely ergodic and M(X, T) = {m} then
P(T, f) = h,(T) + [ f dm.

So for a rotation Tz = az of a compact metric group G with {a"} dense
in G we have P(T, f) = [ f dm where m is Haar measure on G.

§9.4 Pressure Determines M(X, T)

We shall show how P(T, ‘) determines the members of M(X,T) when
T:X — X is a continuous map of a compact metrisable space. Recall that
afinite signed measure on X is a map u: %(X)— R which is countably additive.

Theorem 9.11. Let T:X — X be a continuous map of a compact metrisable
space with h(T) < co. Let u:%(X)— R be a finite signed measure. Then
peM(X,T) iff [ fdu< P(T,f) YfeC(X,R).
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Proor. If e M(X, T) then | fdu < P(T, f) by the variational principle.

Now suppose  is a finite signed measure and | f du < P(T, f) Vf € C(X, R).
We first show u takes only non-negative values. Suppose f > 0. If¢ > 0 and
n > 0 we have

fn(f+a)du_—f n(f +e)du> —P(T, —n(f +¢))

—[A(T) + sup(—n(f + ¢))] by Theorem 9.7(ii)
—h(T) + ninf(f + ¢)
> 0 for large n.

v

Therefore [(f + &)du > 0 so that | f du > 0. Hence p is a measure.

We now show u(X) = 1. If n € Z then {ndu < P(T,n) = h(T) + n, so that
u(X) <1+ h(T)/n if n >0 and hence u(X) <1, and u(X) =1+ A(T)/n if
n < 0 and hence p(X) > 1. Therefore u(X) = 1.

Lastly we show e M(X, T).Ifne Zand f € C(X,R),nf(f o T — f)du <
P(T,n(fo T — f)) = h(T) by Theorem 9.7(vii). If n > 1 then dividing by n
and letting n go to oo gives f(fo T — f)du <0, and if n < —1 then dividing
by nand letting n go to — oo gives [(f o T — f)du = 0. Therefore [ f o Tdu =
[fduvfeCX,R)sopue MX,T). O

Theorem 9.11 says that when h(T) < oo the pressure of T determines the
set M(X,T). We now investigate when the pressure of T determines the
measure theoretic entropies of T. In the proof we use the fact that if K, K,
are disjoint closed convex subsets of a locally convex linear topological
space V and if K, is compact there exists a continuous real-valued linear
functional F on V such that F(x) < F(y)Vx e K,, ye K, (Dunford and
Schwartz [1], p. 417). In our application V will be C(X,R)* x R where
C(X,R)* is the dual space of C(X,R) and is equipped with the weak*-topology.

Theorem 9.12. Let T:X — X be a continuous map of a compact metrisable
space with h(T) < co and let uye M(X,T). Then h,(T)=inf{P(T, f)—
{fduo| f € C(X,R)} iff the entropy map of T is upper semi-continuous at .

ProoF. Suppose h,(T) = inf{P(T, f) — jfdpo|feCXR)} Let ¢ >0 be
given and choose g € C(X R) such that P(T,g) — j'gduo < h,(T) + ¢/2. Let
V.(g; €/2) = {pe M(X, T)|[gdu — [gduo| < &/2}. If € V,(g; &/2) then

h(T) < P(T,g) - f gdu, by the variational principle,

< P(T.g)— [gduo + /2
< h,(T) +e.

Therefore the entropy map is upper semi-continuous at y.
Now suppose the entropy map is upper semi-continuous at y,. By the
variational principle we have h,(T) < inf{P(T,f) — [ fdpo| f € C(X,R)}.
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We now prove the opposite inequality. Let b > h, (T) and let C = {(u,t) €
M(X, T) x R|0 <t < h,(T)}. By Theorem 8.1 C is a convex set. If we con-
sider C as a subset of C(X, R)* x R, where the weak*-topology is used on
C(X, R)*, then (uo, b) ¢ C by the upper semi-continuity of the entropy map
at u,. Applying the result quoted above to the disjoint convex sets C and
(o, b) there is a continuous linear functional F: C(X, R)* x R — R such that
F((u, 1)) < F((po,b)) ¥(u,t) € C. Since we are using the weak*-topology on
C(X,R)* we know that F has the form F(u,t)= [fdu + td for some f e
C(X,R) and some d € R. Therefore | fdu + dt < {fdu, + db¥(u,t) e C, so
{fdu+ dh(T)<|[fdu,+ dbVue M(X, T).If we put u = py thendh,(T) <
db so d > 0. Hence

f f
hT) + [ Zdu<b+ | 2 dyo Ve M(X,T)
so, by the variational principle,

P(T,f/d) < b + f%dﬂo.

Rearranging gives

b= P(T, f/d) - ff/dd,uo > inf{P(T,g) - fgd,uo|g e C(X, R)}
Therefore h, (T) > inf{P(T, 9) — [gduo|g € C(X,R)}. O

Remarks

(1) The same proof shows that if T:X — X is a continuous map with
WT) < oo and poe M(X,T) then inf{P(T,f)— [fdu,|fe C(X,R)} =
sup{limsup,_, , h, (T)|{u,} is a sequence in M(X, T) with p, - po}.

(2) Theorems 9.11 and 9.12 show that if the entropy map of T is upper
semi-continuous at every point of M(X, T) and h(T) < oo then P(T, ) de-
termines the set M(X, T') and the entropy h,(T) for all ue M(X, T). Com-
bining this with the variational principle we see that when the entropy map
of T is upper semi-continuous on M(X, T) (for example, when T is an expan-
sive homeomorphism (Theorem 8.2.)) and h(T) < oo then knowledge of
P(T,-):C(X,R) = R is equivalent to the knowledge of M(X, T) and h,(T)
for all u e M(X, T). Hence the pressure contains a lot of information.

(3) It is not difficult to show that if A(T) < oo then T is uniquely ergodic
iff P(T,-):C(X,R)— R is (Fréchet) differentiable at each point of C(X,R).

§9.5 Equilibrium States

The variational principle gives a natural way of selecting members of
M(X, T). The concept extends the idea of measure with maximal entropy.
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Definition 9.8. Let T: X — X be a continuous map of a compact metrisable
space X and let f € C(X, R). A member p of M(X, T) is called an equilibrium
state for f if P(T,f) = h(T)+ [fdu. Let M (X, T) denote the collection
of all equilibrium states for f.

Remarks

(1) A measure with maximal entropy is precisely an equilibrium state
for 0. Hence M (X, T) is the same as M (X, T).

(2) As we know from §8.3 the set M (X, T) can be empty.

(3) If h(T)= oo then M (X, T)={ue M(X, T)|h,(T)= oo} Vf e C(X,R),
so M (X, T) # & by Theorem 8.7(iv).

We have the following generalisation of Theorem 8.7.

Theorem 9.13. Let T:X — X be a continuous map of a compact metrisable
space and let f € C(X,R). Then

(i) M (X, T)is convex.

(ii) If h(T) < oo the extreme points of M (X, T) are precisely the ergodic
members of M (X, T).

(iti) If K(T) < oo and M (X, T) # & then M (X, T) contains an ergodic
measure.

(iv) If the entropy map is upper semi-continuous then M (X, T) is compact
and non-empty.

(v) If f, g€ C(X,R) and if there exists ¢ € R such that f — g — c belongs
to the closure of the set {ho T — h|h e C(X,R)} in C(X,R), then M (X, T) =
M,(X,T).

Proor. The first four parts are proved in the same way as the corresponding
parts of Theorem 8.7. To prove (v) we notice that Vue M(X,T) [fdu=
{gdu + c. Therefore h,( +ffd/z h(T)+ [g du + ¢ and P(Tf)

P(T,g) + c. Hence Mf(X T) M (X, T) dJ

Part (iv) implies that when T is an expansive homeomorphism every
f € C(X,R) has an equilibrium state. This also follows from Theorem 9.6
and the proof of the variational principle which also give a way of obtaining
an equilibrium state as a limit of atomic measures on separated sets.

The notion of equilibrium state is tied in with the notion of tangent
functional to the convex function P(T, -):C(X,R) - R.

Definition 9.9. Let T: X — X be a continuous map of a compact metrisable
space with h(T) < oo and let f € C(X,R). A tangent functional to P(T, ")
at f is a finite signed measure u:%(X) — R such that P(T, f + g) — P(T, f) =
_[g du Vg e C(X,R). Let t(X,T) denote the collection of all tangent func-
tionals to P(T, -) at f.
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Remarks

(1) It follows from the Riesz representation theorem (Theorem 6.3) that
the dual space C(X, R)* of C(X, R) can be identified with the collection of all
finite signed measures on (X, #(X)). This is because each L € C(X, R)* is of
the form L(f) = [ fdu Vf € C(X, R).(Kingman and Taylor [1] p. 253). Hence
we can think of the tangent functionals to P(T, -) at f as those members L of
C(X, R)* satisfying L(g) < P(T, f + g) — P(T,f) Vg € C(X, R).

(2) Foreach f e C(X,R)wehavet (X, T) # &. This follows from Remark
(1) and the Hahn-Banach theorem, since we can extend the identity map
on R to an element of C(X,R)* dominated by the convex function g —

P(T, f +9) — P(T. f).

Theorem 9.14. Let T:X — X be a continuous map of a compact metrisable
space X with h(T) < oo and let f € C(X,R). Then M (X, T) c t,(X,T) =
M(X,T).

PrROOF. Let pe M (X, T).If g e C(X,R),

P(T. +¢)— P(T.N) 2 h(T) + [fdu+ [gau—nT)— [ i = [qan,

by the variational principle. Therefore M (X, T) < t (X, T).
We now show t(X,T) = M(X,T). Let uet(X,T). We first show u
takes only non-negative values. Suppose g > 0. If ¢ > 0 we have

f(g+8)du= “J"“(g-i'ﬁ)d,u

> —[P(T,f) — inf((g + ¢))] + P(T,f) by Theorem 9.7(ii)

= (infg + ¢) > 0.

Therefore [gdu > 0 so p takes non-negative values. We next show u(X) = 1.
Ifn e Z then [ndu < P(T, f + n) — P(T, f) = nsoifn > 1 then u(X) < 1 and
if n < —1 then u(X)> 1. Finally we show pue M(X,T). If neZ and g€
C(X,R),

n f(go T—g)dus< P(T, f +nlg> T = g) = P(T.f)
=0 by Theorem 9.13(v).
If n > 0 this gives [g o Tdu < [gdu and if n < 0 this gives [g o Tdp > [gdp.
Therefore (g o Tdu = [gduso pe M(X, T). O
With an extra assumption we get the equality of ¢ (X, T) and M (X, T).

Theorem 9.15. Let T:X — X be a continuous map of a compact metrisable
space with h(T) < co and let f € C(X,R). If the entropy map of T is upper
semi-continuous at the members of t (X, T) then t(X,T)= M (X,T).
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PrOOF. It remains to show t(X,T)c M (X, T). Let pet,(X,T). Then
P(T, f+9)—[(f+9)du=P(T,f)— [ fduVge C(X,R) so P(T,h)—f[hdu >
P(T,f) — _[fdu Vh e C(X,R). Theorem 9.12 then implies h,(T) > P(T, f) —
[ fdp so that P(T, f) = h,(T) + [ f du by the variational principle. O

Remark. Without the upper semi-continuity assumption one can show
t(X, T) = (Vi1 {ue MQX, D[h(T) + [ fdu> P(T, ) — 1/n}.

We know that the two-sided shift homeomorphism is expansive and so
the following deduction from Theorem 9.15 holds for the shift.

Corollary 9.15.1. Let T: X — X be a continuous map of a compact metrisable
space and suppose the entropy map of T is upper semi-continuous at each point
of M(X,T). Then there is a dense subset of C(X,R) such that each member
f of this subset has a unique equilibrium state (i.e. M (X, T) has just one
member).

PROOF. We use the theorem that a convex function on a separable Banach
space has a unique tangent functional at a dense set of points (Dunford and
Schwartz [1], p. 450). This combined with Theorem 9.15 gives the result. [J

If ue M(X,T) is the only equilibrium state for some f € C(X,R) then
this gives a natural way of characterising y: the only measure with h,(T) +
_[ fdu = P(T,f). It turns out in many cases that such a measure y has very
strong ergodic properties. In many cases T is a Bernoulli automorphism of
the probability space (X, %(X),u). When T is a specific homeomorphism
(such as a shift or an Axiom A diffeomorphism) results are known which
give conditions on f € C(X,R) to ensure f has a unique equilibrium state
(see Bowen [2]). These results are important in the study of diffeomorphisms
(see§10.1). Forexamplelet T: X » X (X =[[%, ¥, Y ={0,1,...,k— 1})be
the shift homeomorphism. Let us denote points of X by x = {x,}%, and
Y= {yn} 2. For fe C(X,R)and n > 1 let

var,(f) = sup{|f(x) — f(y)| |x, ye X; x; = y;when —(n— 1) <i<n-—1}.

Since f is continuous we know var,(f) — 0. Let us suppose f has the stronger
requirement that var,( ) goes to 0 at an exponential rate i.e. 3C > 0,2 € (0,1)
with var,(f) < Co" Vn > 1. (If f(x) only depends on a finite number of co-
ordinates of x then f satisfies this assumption.) It can be shown that f has a
unique equilibrium state u, and that the measure-preserving transformation
T on the probability space (X, (X), i) is a Bernoulli automorphism. Also
if f,ge€ C(X,R) both satisfy the exponential condition then u, = p, iff
dce Rand he C(X,R) with f — g = ¢ + h o T — h. This tells us many differ-
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ent measures are characterised as unique equilibrium states. This gives a
dense subset of C(X,R) each member of which has a unique equilibrium
state. We shall prove a special case of this which generalises Theorem 8.9.

Theorem 9.16. Let T:X — X be the two-sided shift homeomorphism of the
space X =[]2,Y,Y={0,1,...,k—1}. Let ag,ay,...,a,€R and
define f e C(X,R) by f(x)=a,, where x = {x,}% . Then f has a unique
equilibrium state which is the product measure defined by the measure on Y
which gives the point i measure

PrROOF. Let &= {A,,...,A,—,} denote the natural generator ie. A=
{xn} 2| X0 = i}. Weknow h(T) = h(T, &) < H,(6)Vu € M(X, T)(Theorem
4.17). We know from the end of §9.1 that P(T,f) = log(}%Z3 e%). Also
My(X,T)# & by Theorem 9.13(iv). Let pe M (X, T). Put p; = pu(A4,),
0<i<k—1.Then

log (kil ) T) N kZl .

Jj=0 Jj=

k—1
<H/(¢ +Z ap; = ij — logp))

k—1
< log( > e“f> by Lemma 9.9.
ji=o

By Lemma 9.9 we must have

Also h(T) = H (¢) so since
h(T)=h(T,¢) < - ! H <n\/1 T"é) < H/(¢) (Theorem 4.10)

we have H,(\/{Z) T™¢) = nH (&). Theorem 4.4(ii) implies p is a product
measure, and therefore u is the product measure which gives A; measure

ai

e

=1
3 e
j=o

a
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Remarks

Let T:X — X be the two-sided shift homeomorphism as in Theorem 9.16.

(1) There exist f € C(X, R) which have more than one equilibrium state
(for a nice description of this see Hofbauer [1]).

(2 Ureco.ry M (X, T)isa dense subset of M(X, T) for the norm topology
on C(X,R)* (and hence in the weak*-topology) (Israel [1], p. 117; Ruelle
[2], p. 52).

(3) If uy, ..., u, € E(X, T) there exists f € C(X,R) with {uy,...,u,} <
M (X, T) (Israel [1], p. 117; Ruelle [2], p. 52). Therefore every ergodic
measure for the shift is an equilibrium state. This statement is not true for
an arbitrary homeomorphism 7.

(4) See Ruelle [2] for the connection of topological pressure and equilib-
rium states with the corresponding notions in physics. Ya. G. Sinai was the
first to use equilibrium states to study diffeomorphisms (see §10.1).



CHAPTER 10
Applications and Other Topics

In this chapter we briefly describe some applications of the concepts intro-
duced in the earlier chapters and mention some topics we have not discussed.

§10.1 The Qualitative Behaviour of Diffeomorphisms

In the subject of differentiable dynamics one tries to understand the behaviour
of T" for large n when T: M — M is a difftomorphism of a compact differenti-
able manifold M. (see Smale [1]). Therefore one would like to know about
the orbits {T"(x)|n € Z} of a large set of points x € M. There is a natural
notion of set of measure zero in M: — a Borel subset 4 of M has smooth
measure zero if the intersection 4 N U with every coordinate chart U has
zero Lebesgue measure (i.e. if ¢ : U — RP is the coordinate map then ¢(4 N U)
has Lebesgue measure zero in R?). So it would be natural to try to understand
the orbits of a set of points whose compliment is a set of smooth measure zero.
It turns out that this problem is closely connected to the study of equilibrium
states of T:M — M.

For a certain class of difftomorphisms T:M — M the following result
holds (see Bowen [2]). Let T:M — M be an Axiom A diffeomorphism of a
compact manifold M. There is a finite collection {y,, ..., u,} of members of
M(M, T) for which the following statements hold.

(i) The set
B;= {x eEM

ln—l
-2 5T-‘x"’/1j}
n <o

has positive smooth measure for each j, 1 < j < r,and M\| J;-, B;hassmooth
measure zero.

229
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(i) There is a natural function ¢ € C(M,R) such that {u;,...,u,} are
exactly the ergodic equilibrium states for ¢.

The condition (1/n) Y724 d7i, — u; means that for every fe C(M,R)
(1/m) Y128 f(T'x) - [ f dy; so that the average value of each “observable”
f on the orbit of x is calculable by the measure ;. So this result connects
the study of equilibrium states of T to the understanding of the asymptotic
behaviour of the orbits of most points in M. D. Ruelle has suggested a
programme of extending this, and related results to non Axiom A diffeomor-
phisms (see Ruelle [3], [4], [5]) and even to the case of infinite dimensional
manifolds in an attempt to give a description of hydrodynamic turbulence.
At the basis of these extensions are two ergodic theorems which we describe
in the next section.

§10.2 The Subadditive Ergodic Theorem and the
Multiplicative Ergodic Theorem

In order to motivate the two ergodic theorems let us consider a differentiable
transformation T:M — M of a compact C* manifold M. For each point
x € M let t,.M denote the vector space of all tangent vectors to M at x. The
tangent bundle t™ = ( J, ., t.M can be given a natural manifold structure
and is a C*® vector bundle over M. If T:M — M is C" differentiable (r > 1)
then its tangent map tT:tM — tM is a C"~! differentiable map and for each
x € M the transformation 1, T = tT|, j:t,M — t7.M is linear. We think of
tT as the linearisation of T, and some (non-linear) problems about T on M
can be lifted to linear problems about T on tM. We sometimes write 7(T)
if it is ambiguous to write tT. The tangent bundle tM always possesses a
Riemannian metric i.e. there is an inner product ( , ), on 7, M for each x and
these inner products depend smoothly on x. A Riemannian metric on M
determines a norm |||, on t,M and all Riemannian metrics on M are
equivalent in the sense that if |||-|||, denotes the norm on t,M coming from
another Riemannian metric then there are positive constants a, b such that
all|v|ll« < |v|l< < b||[v]||« Vv € T.M ¥x € M. The results we state will not depend
on which Riemannian metric on M is chosen.

We are trying to understand the behaviour of T" for large n. One of the
most important aspects of this is to understand the expansion and contraction
that T creates. The linearised form of this problem is to study contraction
and expansion of 7(T"). We could state the problem as follows: if a Rieman-
nian metric is chosen on M try to understand, for each x € M and each
v € T M, how ||t (T")||rny varies with n.

To begin with let us consider the problem of how ||t,(T")|| varies with n,
where ||t (T")|| denotes the norm of the linear map t,(T"):t.M — 7., M
calculated using the norms ||*||, on t,M and ||*||zn, on t7, M. By the chain
rule we have

rx(Tn) =Trn- ‘X(T) errre TTx(T) °© Tx(T)
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so that
n—1
el < T lerat D

If this inequality were an equality then we could put f(x) = log||r.(T)|| and
then (1/n)log|[r(T")|| would equal (1/n)} -5 f(T'x) so we could use the
ergodic theorem (Theorem 1.14) if we knew Hr (T)|| was bounded below (so
that f would be integrable). So we have two reasons why we cannot use
Theorem 1.14: firstly we cannot express our quantity as » /=4 f(T'x), and
secondly the functions log||z(T)|| may not be integrable and may even take
the value — co. However if we put f,(x) = log||t,(T")|| then f, . ,(x) < fi(x) +
f(T"x) by the chain rule and certainly max(0, f,(x)) is integrable for any
probability measure on (M, %(m)) because f, is bounded above. This problem
is one motivation for the following theorem of J. F. C. Kingman (Kingman
(1], [2]).
If f:M — R is a function we put f*(x) = max(0, f(x)).

Theorem 10.1 (Subadditive Ergodic Theorem). Let (X, %, m) be a probability
space and let T:X — X be measure-preserving. Let {f,}T be a sequence of
measurable functions f,: X — R U {— co}satisfying the conditions:

(@) fi € Li(m)
(b) foreachk,n>1f,, < fi+ fro T"ae.

Then there exists a measurable function f:X — R U {— oo} such that

ffelL'm), foT=fae, lim — f fae., and

n— oo

1 1
lim — f,,dm—lilfsz,,dm—ffdm.

n-ow N

Remarks
(1) 1t follows from (a) and (b) that f,} € L'(m). So either f, e L'(m) or
_[ f,dm = — co. The same statement holds for f, so that some of the integrals

in the last statement of the theorem could be — o0
(2) From (b) we have [ f,,,dm < (f,dm + | fydm so

lim — f Judm = mf f fodm by Theorem 4.9.

n—oo

(3) The subadditive ergodic theorem generalises the Birkhoff ergodic
theorem (Theorem 1.14) because if g € L'(m) is given we can take f(x) =
Yi26 9(T).

(4) Another proof of a special case of this theorem has been given by
Derriennic [1] and Theorem 10.1 can easily be reduced to this special case
(see Appendix A of Ruelle [4]).
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The following is an immediate corollary to Theorem 10.1, where we use
L(R*, R¥) to denote the space of all linear operators on R* and ||-|| to denote
any norm on it. By choosing a basis in R* we could of course consider
L(R*, R¥) as the space of all k x k real matrices.

Corollary 10.1.1. Let T be a measure-preserving transformation of the prob-
ability space (X, B,m). Let A: X — L(R*, R¥) be a measurable function such that
(log||A(x)||)* € L*(m). There exists a measurable function y:X — R U {— oo}
such that y* € L'(m), y o T = y a.e.,

lim %log”A(T"'lx) o0 A(TX) o A(x)|| = x(x) a.e.

n—oo

and

lim 1flog”A(T"—lx) oo A(Tx) o A(x)||dm

n-owo N
1
= inf— [log|A(T"~1x) o -+~ o A(TX) o A()]|dm
n R

= J'x(x) dm.

This result was first proved by Furstenberg and Kesten.

We also get the following corollary of Theorem 10.1 for a differentiable
map T of a smooth manifold M. Recall that M(M, T) denotes the collection
of all T-invariant probability measures on the g-algebra, (M), of Borel
subsets of M.

Corollary 10.1.2. Let T:M — M be a C*-differentiable map of the compact
manifold M and take any Riemannian metric on M. There exists B € (M) with
TB < B and m(B) = 1 Vm € M(m, T), and a measurable function y:M — R U
{— o0} such that

lim Lol ()| = 1 ¥ € B.
We have y(x) < sup{||t,T|| :y € M}, x(Tx) = x(x) Vx € B and
tim — [logle.(T")dm = inf~ [loglfe.(T")] dm
= fx(x) dmVme M(M, T).
The set B and the function y do not depend on the Riemannian metric chosen.
Let us now turn to the problem of understanding how log||1x(T")v]| varies

with n when v € 7,M. This motivates the following result of V. I. Oseledets
(Oseledets [1]).



§10.2 The Subadditive Ergodic Theorem and the Multiplicative Ergodic Theorem 233

Theorem 10.2 (Multiplicative Ergodic Theorem). Let T be measure-preserv-
ing transformation of the probability space (X, B, m). Let A: X — L(R*, R*) be
measurable and suppose (log||A(x)||)* € L'(m). There exists Be B with
TB < B and m(B) = 1 with the following properties.

(a) There is a measurable function s:B—Z* withso T =s.

(b) If x € B there are real numbers 21(x) < A3(x) < - - - < 25)(x), where
A1(x) could be — .

(c) If xe B there are linear subspaces {0} = VO(x)c V(x)c - - c
VEe)(x) = R of R*.

(d) if xe Band 1 < i < s(x) then

1
lim — log||A(T" " x) o - - - o« A(Tx) o A(X)(v)||

= 29x) for allve VOx)\Vi~ Y (x).

(e) The function A is defined and measurable on {x|s(x) > i} and 29(Tx) =
29(x) on this set.
(f) Ax)(VO(x)) = VO(Tx)if s(x) > i.

Remarks

(1) For x € B, Theorem 10.2 gives the behaviour of log||A(T" " 'x)o - - o
A(Tx) o A(x)v|| for all ve R* and the behaviour is determined by the s(x)
numbers A4)(x), . . ., A6)(x),

(2) Ifwe take (X, 8, m) to be the trivial probability space consisting of one
point and T is the identity transformation then the result reduces to saying
that for a linear transformation A of R* these are subspaces {0} = V@ <
VO c V@ - c VO =R such that ||4"]|'" > ™’ if ve VO\VETD,
where ¢*" < ¢*® < -+ - < ¢*” are the district numbers which are absolute
values of eigenvalues of A.

(3) When k = 1, Theorem 10.2 can be stated: if g: X — R is measurable
and g* € L'(m) then lim,_, (1/n) Y725 g(T'x) = g,(x) exists a.e. but could
take on the value — oo.

(4) If T is ergodic then s(x) is constant a.e. and each A¥(x) is constant a.e.

(5) The numbers A1)(x), ..., A6)(x) are called the (Liapunov) character-
istic exponents of the system (T,A4) at x, and VI (x)c VP (x) = ---
VeeN(x) = RF is called the associated filtration. The number m®(x) =
dim V9(x) — dim V¥~ !)(x) is called the multiplicity of 29(x).

(6) It follows that the function y(x) occurring in corollary 10.1.1 is
ﬂ.(s("”(x).

(7) Because of its use by Margulis in the study of algebraic groups
Raghunathan (Raghunathan [1]) gave another proof of Theorem 10.2 that
is valid for local fields. A version of this proof is given in Ruelle [4].

When each A(x) is an invertible linear transformation we have the fol-
lowing result. We use GL(R") to denote the space of invertible linear trans-
formation of R*.
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Theorem 10.3. Let T be an invertible measure-preserving transformation of the
probability space (X, B, m). Let A:X — GL(R*) be a measurable function with
(log||A(x)||)* € L'(m) and (log||(A(x))~||)* € L'(m). There exists C € B with
TC = C and m(C) = 1 such that for each x € C there is a direct sum decom-
position of R* into linear subspaces R* = W(x) ® WP (x) @ - - - @ WE(x)
with

lim " logllA(T™ 120+ -+ AT > AR)0)]| = 290

n— oo

and

lim %log”(A(T“x) oo AT™"X)) ()| = —29(x) if 0 # v e WO(x),

n— oo

The function A1)(x) is never — oo, and A(x)W9(x) = WO(Tx) if i < s(x).

Remarks

(1) When (X, 4%, m) consists of one point and A € GL(R*) this theorem
reduces to the decomposition R = W @ WP @ - - - @ W into subspaces
such that AW® = W® and all eigenvalues of 4| W® have the same absolute
value e*”.

(2) See Ruelle [4] for the proof.

There is the following version of the multiplicative ergodic theorem for
differentiable maps.

Theorem 10.4. Let M be a compact C* manifold and let T:M — M be a C*
differentiable map. Choose a Riemannian metric on M. Then there exists
Be #(M) with TB< B and m(B)=1 Yme M(M,T) with the following
properties.

(a) There is a measurable function s:B— Z* withso T = s.

(b) If x € B there are real numbers 1M(x) < 2¥(x) < - - - < A*CV(x), where
AN(x) could be — oo

(¢) If x € B there are linear subspaces, {0} = VO(x)c VN(x) = - <
Y6N(x) = RE of RE

(d) If xe Band 1 < i < s(x) thenlim,_, ,, (1/n)log||t(T")v|| = A9(x) for all
ve VOx))\VE1x).

() A9(x) is defined and measurable on {x € B|s(x) > i} and 29(Tx)=
A9(x).

() T(TIVO(x) < V(Tx) if i < s(x).
The objects B, s, 29, V@ do not depend on the choice of Riemannian metric.

If T is a diffeomorphism then AY)(x) is never — co and we also have t.(T)
VO(x) = VO(Tx).
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Remarks

(1) This theorem says there is a “large” subset of M (“large” in the sense
that m(B) = 1 Ym € M(M, T)) such that the behaviour of ||z (T")v|| is known
for all x € B and all v € 7, M. One can produce examples to show that one
cannot obtain this result for all x e M. The functions A are called the
Liapunov.exponents of the diffeomorphism T. As one might expect they are
connected with the entropies of T (see Ruelle [3]).

(2) This result can be generalised to the case of a vector bundle map
covering a continuous map of a compact metric space (see Ruelle [4],
Appendix D).

(3) There is also a version of Theorem 10.4 for diffeomorphisms that says
the set of points C where the conclusion of Theorem 10.3 hold is large in
the sense that m(C) = 1 Vme M(M, T).

(4) If 29x) < 0 then for every 0 # v e V¥(x) and every ¢ > 0 we have
e T < &"®)** for all large n. Therefore if 1(x) < 0 then all elements
of V%(x) converge exponentially to zero with rate at most ¢*“® under the
iterates of the tangent map to T. Similarly if 2¥)(x) > 0 then all elements of
7,M\VY~Y(x) have lengths which become infinite exponentially with rate at
least ¢*”™ under the iterates of 7(T). If A?)(x) = 0 then we know the elements
of VP(x)\V?~1(x) do not converge exponentially to 0 or co under the
iterates of t(T).

Suppose T is a diffeomorphism and consider the decomposition 7,M =
WOX) @ - - - @ W) (x) over the “large” set C (see Remark (3)). Let g(x) be
such that A4™(x) < 0 < 14™+1)(x) and p(x) such that A?®~D(x) <0<
AP(x). Either p(x) = q(x) + 1 or p(x) = q(x) + 2. Put U%(x) = {0} in the
first case and U(x) = WY@ *1)(x) in the second case, and

q(x) s(x)
U(x) = @ WOx), U'x)= & W)
i=1 J=px)
(Note that US(x) = V4™)(x) in the previous notation.) Then t M = US(x) ®

U¢(x) @ U¥(x) and for each v # 0, v € U%(x), ||t (T")v|| goes to 0 with exponen-
tial rate at most 24®)(x); for each v # 0,v € U*(x), ||t.(T")v|| goes to oo with ex-
ponential rate at least A?®)(x); and for each v # 0, v € U9(x), ||t(T")v|| does
not converge to 0 or oo with any exponential rate. It is the contraction caused
by the “stable” subspaces US(x) and the expansion determined by the
“unstable” subspaces U*(x) that make the interesting behaviour of T: M — M.

Let us now consider the interpretation of the above results for two
examples.

Consider first the north-south diffeomorphism 7:K — K of the unit circle.
We know M(K, T) consists of all convex combinations of dy, ds (where N is
the north pole of the circle and S is the south pole) so for a set Be %(K) to
have m(B) = 1V m e M(K, T) means that N and S belong to B. The set {N, S},
although only containing two members, is large from the point of view of
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the dynamics of T because we know that all other points move away from
N towards S under iteration of T. The tangent bundle K can be considered
as the product K x R and we can write t7(T):K x R —> K x Rby «(T)(z,v) =
(T(z), T'(z) - v) where T":K — R is a function. Therefore t(T")(x, v) = (T"(2),
T(T" 'z) - T'(z)v) so if ||-|| denotes the trivial Riemannian metric on K
(||(z, v)[| = |v]) then

%log”r(T”)(z, v)|| = % 'Eo log(|T(T'2)| - |v]) = log(|T'(s)|) ifz# N,

because T"(z) - S and hence log|T'(T"z)| - log|T'(S)|. So in fact we could
take B = K in Theorem 10.4 and A*(N) = log|T'(N)| > 0, V)(N) = 13K,
and if z # N, AY(z) = log|T'(S)| < 0, V)(z) = 7,K. This shows the function
M need not be continuous.

Now let A: K? — KP be an automorphism of the p-dimensional torus. The
tangent bundle tK? can be represented as the product K? x R? and then the
tangent map t4:K? x R? — K? x RP is given by t(A4)(x, v) = (A(x), Av) where
A:RP - R? is the linear transformation that covers A. Take the Riemannian
metric where ||(x,v)|| is the Euclidean length of v € R?. Then ||r(A")(x, v)|| =
l|(A"(x), A"(v))|| = ||A"(v || Vn > 1. Therefore if 2V < A <--- < A¥ are the
numbers such that e, ..., e** are the distinct absolute values of eigen-
values of 4 and VO = - - - = V® = RP? is the corresponding filtration of R”
then, for all x, s(x) = s, A9(x) = 1¥ and VO(x) = {x} x V.

We know that for each diffeomorphism T: M — M we have a nice theory
of expansion and contraction for the linearised situation t(T):tM — tM. To
tackle problems about the action of T on M it is desirable to have a non-
linear version of this theory on M. Let us consider contraction. In the linear-
ised situation this is determined by the subspaces V@™)(x) of .M for x € B
where g(x) is the largest natural number with 24®)(x) < 0 (put g(x) = 0 if no
such natural number exists). One would like to “integrate” the family
{V@®)(x):x € B} of subspaces by finding a family of smooth submanifolds
of M which are disjoint and such that for each x € B the space V@™)(x) is the
tangent space to the submanifold containing x. This can be done and we refer
the reader to Ruelle [4] or Pesin ([ 1], [2]) for the statement of such a theorem.
Aninfinite dimensional version of this theory appears in Ruelle [ 5]. See Ruelle
[3] for further discussion and references. Katok [1] connects Liapunov
exponents with existence of periodic points.

§10.3 Quasi-invariant Measures

In some situations one needs to study a measurable transformation T: X — X
of a probability space (X, 4, m) where T is not measure-preserving but does
preserve sets of zero measure (i.e. whenever m(B) = 0 then m(T ™! B) = 0). This
occurs when T is a differentiable map of the interval [0, 1] (or of a compact
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manifold) with a continuous derivative. We then say m is a quasi-invariant
measure and that T is a non-singular transformation of (X, 4, m). This raises
the problems of studying such transformations and, in particular, of deciding
if there is another measure pu on (X, 4) which is equivalent to m (i.e. 4 and
m have the same sets of measure zero) and which is an invariant measure for
T. There are examples of non-singular transformations having no equivalent
invariant probability measure, and examples with no equivalent invariant
o-finite measure. A description of results on these problems is in Friedman’s
book (Friedman [1]).

Let us consider invertible non-singular transformations from now on (i.e.
T is bijective and bimeasurable and m(B) = 0 iff m(T ~*B) = 0). Notice that
the definition of ergodicity makes sense for non-singular transformations.
The class of all ergodic invertible measure-preserving transformations can be
partitioned into four classes as follows. Class I consists of these tranfor-
mations T:X — X where m(| );> _, T"x) = 1 for some x € X (i.e. m is con-
centrated on one orbit). If T:(X,%,m)— (X,4%,m) is not in class I then it
belongs to class I if there is a probability measure y on (X, %) which is
equivalent to m and invariant for T. It belongs to class II, if there is an
infinite measure equivalent to m and invariant for T. Finally T belongs to
class III if there is no measure which is equivalent to m and invariant for
T. This terminology is used because there is a natural way of associating to
each T a von Neumann algebra which is a factor, and then the above decom-
position corresponds to the Murray-von Neumann classification of factors.

A natural notion of isomorphism of non-singular transformations is
orbit equivalence. If T;: X; — X is an invertible non-singular transformation
i=1,2, we say T, is orbit equivalent to T, if there is an invertible non-
singular transformation ¢: X; — X, such that for almost all x € X; ¢ maps
the set {T"}x|n € Z} onto the set {T%¢(x)|n e Z}.

H. Dye proved that any two transformations of class II; are orbit equi-
valent and any two transformations of class I, are orbit equivalent. W.
Krieger introduced the idea of the ratio set of T and this allowed class III
to be further divided into classes I1I, for 1 € [0, 1]. He showed thatif 2 € (0, 1]
then any two members of III, are orbit equivalent. For the class 111, the
situation is different. These results are described in Sutherland [1].

The above results apply to the non-singular actions of other countable
groups on (X,4,m). If G is a topological group then an action of G on
(X,%,m) is a measurable map ¢:G x X — X such that ¢(e,x) =xVxe X
(where eis the identity element of G) and ¢ (g4, $(9,,%))=d(9192,%X) Y91,9,€ G
Vx € X. Every action of the integers Z is determined by a bijection T: X —» X
by the formula Z x X — X:(n,x) —» T"(x). An action of G is non-singular if
foreach g € G the transformation x — ¢(g, x) is a non-singular transformation
of (X, B,m).

The results described above hold for actions of a class of countable groups
that includes all countable abelian groups. Similar questions can be con-
sidered for actions of Lie groups on (X, %,m) and then one can consider
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other types of orbit equivalence; for example we can require that the map
¢, in the definition of orbit equivalence, be infinitely differentiable on almost
all orbits. Quite a lot is known about orbit equivalence of actions of R
(Ornstein [2]).

One can also consider certain questions for countable equivalence rela-
tions (see Feldman and Moore [1]) and also for foliations (see Bowen and
Marcus [1], Plante [1]). In particular the ideas of quasi-invariant measure
and invariant measure for a foliation has proved useful in the study of dif-
ferentiable dynamical systems (see references above) and geometry of mani-
folds (see Thurston’s work on isotopy classes of difffomorphisms of surfaces).

§10.4 Other Types of Isomorphism

When dealing with measure-preserving transformations which are homeo-
morphisms of compact metric spaces it makes sense to try to use a more
restrictive kind of isomorphism than the usual one. One would say that T,
is isomorphic to T, in the new sense if ¢T; = T,¢ for some invertible
measure-preserving transformation ¢ which also ties in with the topological
structure in some way. To require that ¢ be a homeomorphism would be
too restrictive. Let us suppose that T, is the two-sided shift on X; = [[%,
{0,1,...,k — 1} and T, is the two-sided shift on X, = [ [, {0,1,...,1 =1} ~®
and that m,, m, are shift invariant measures on X, X, respectively. Suppose
¢:X,— X, isaninvertible measure-preserving transformation with ¢ T';(x) =
T,¢(x) a.e.. We could consider ¢ to be computable if for almost all x € X
we could compute (¢(x)),, the zero-th coordinate of ¢(x), from just a finite
number of coordinates of x. This leads to the notion of finitary isomorphism
studied by M. Keane and M. Smorodinsky (Keane and Smorodinsky [1],[2]).

They showed that two Bernoulli shifts with equal entropy are finitary
isomorphic, strengthening the theorem of Ornstein (Theorem 4.28) in this
case. They also extended this result to irreducible aperiodic Markov shifts.

A topological version of Ornstein’s theorem has been obtained by R. L.
Adler and B. Marcus [1]. They showed that for the class of irreducible
aperiodic topological Markov chains topological entropy is a complete
invariant for the equivalence relation of “almost topological conjugacy”.

§10.5 Transformations of Intervals

The study of transformations of intervals can arise in many ways from
studying other problems. Consideration of billiard problems (see Sinai [2])
leads to the consideration of maps of intervals, so does the study of the well-
known Lorenz differential equation (see Williams [1]), and certain problems
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in complex function theory can be reduced in a similar way (see Bowen [6]).
The family of maps T,(x) = ax(1 — x) mod 1 of [0,1), where a > 0, have
received a lot of attention. One of the main problems is to decide which maps
preserve a measure which is absolutely continuous relative to Lebesgue
measure and then to determine the ergodic properties relative to this measure.
There are many recent results in this direction.

§10.6 Further Reading

We indicate here where some topics not covered in this book can be found.

A good source for the history of ergodic theory and its close connections
with probability theory, harmonic analysis and group representations is
Mackey’s survey article, Mackey [1].

The modern connections of ergodic theory with statistical mechanics is
described in the books of Ruelle (Ruelle [2]) and Israel (Israel [1]). The
connections of this theory with the study of diffcomorphisms is given in
Ruelle [2] and Bowen [2], [3]. See Arnold and Avez [1] for some earlier
theory.

We have not described the theory of flows of measure-preserving transfor-
mations (i.e. measure-preserving actions of R). These are studied in Hopf’s
book (Hopf [1]) and Sinai’s book (Sinai [2]). Also presented in Sinai’s book
is anintroduction to the theory of geodesic flows. Geodesic flows are, perhaps,
the most important examples of flows. Their importance and smooth struc-
ture is described in Abraham and Marsden [1]. Another important class of
flows, billiard flows, are also studied in Sinai [2].

The important topic of approximation of measure-preserving transfor-
mations by periodic transformations is described in Katok and Stepin [1].

H. Furstenberg has used ergodic theory and topological dynamics to give
proofs of some important theorems in number theory. In particular he has
given a proof of Szemerédi’s theorem (Furstenberg [ 2]). Several other results
are proved in Furstenberg and Weiss [1].

A detailed description of many theorems in ergodic theory known before
1967 appears in Vershik and Yuzviskii [1], and a description of much of the
theory discovered between 1967 and 1974 appears in Katok, Sinai and Stepin
[1]. Also many references are given there. The notes of Jacobs (Jacobs [2])
give an excellent account of ergodic theory up to 1962. A detailed account of
entropy theory is given in Rohlin [3]. The proofs of some of the theorems
on entropy that we stated without proof are given in Parry [2].
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